• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic Analysis of Tomato Root Colonization by Arbuscular Mycorrhizal Fungi

View/Open
Closed Request a copy of the document
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/6487
DOI
10.1093/aob/mcy240
URL
https://academic.oup.com/aob/article/124/6/933/5312893
Derechos de acceso
closedAccess
Metadata
Show full item record
Author
Plouznikoff, Katia; Asins, María J.Autoridad IVIA; Dupré de Boulois, Hervé; Carbonell, Emilio A.Autoridad IVIA; Declerck, Stéphane
Date
2019
Cita bibliográfica
Plouznikoff, K., Asins, M. J., de Boulois, H. D., Carbonell, E. A., & Declerck, S. (2019). Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi. Annals of botany, 124(6), 933-946.
Abstract
Background and Aims Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF–plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved. Methods A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2–2.6 Mbp). Key Results The three AMF colonization parameters were highly correlated (0.78–0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks. Conclusions Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF–plant symbiosis.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

RecolectaSherpa RomeoDulcinea

Statistics

View Usage Statistics
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.