Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems
Metadatos
Mostrar el registro completo del ítemAutor
Fecha
2017Cita bibliográfica
Lazaro, E., Armero, C., Rubio, L. (2017a). Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems. SORT-Statistics and Operations Research Transactions, 1(1), 93-116.Resumen
Virus diseases constitute one of the most important limiting factors in horticultural production.
Cultivation of horticultural species under organic management has increased in importance in
recent years. However, the sustainability of this new production method needs to be supported
by scientific research, especially in the field of virology. We studied the prevalence of three im-
portant virus diseases in agroecosystems with regard to its management system: organic versus
non-organic, with and without greenhouse. Prevalence was assessed by means of a Bayesian
correlated binary model which connects the risk of infection of each virus within the same plot and
was defined in terms of a logit generalized linear mixed model (GLMM). Model robustness was
checked through a sensitivity analysis based on different hyperprior scenarios. Inferential results
were examined in terms of changes in the marginal posterior distributions, both for fixed and for
random effects, through the Hellinger distance and a derived measure of sensitivity. Statistical re-
sults suggested that organic systems show lower or similar prevalence than non-organic ones in
both single and multiple infections as well as the relevance of the prior specification of the random
effects in the inferential process.