• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine

View/Open
Open 2018_Munera_Potential_Postprint.pdf (10.13Mb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5740
DOI
10.1016/j.foodcont.2017.10.037
URL
http://www.sciencedirect.com/science/article/pii/S0956713517305224?via%3Dihub
Metadata
Show full item record
Author
Munera, Sandra; Amigo, José M.; Aleixos, Nuria; Talens, Pau; Cubero, Sergio; Blasco, José
Date
2018
Cita bibliográfica
Munera S, Amigo J.M., Aleixos N, Talens P, Cubero S, Blasco J (2018). Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control, 86, 1-10.
Abstract
Product inspection is essential to ensure good quality and to avoid fraud. New nectarine cultivars with similar external appearance but different physicochemical properties may be mixed in the market, causing confusion and rejection among consumers, and consequently affecting sales and prices. Hyperspectral reflectance imaging in the range of 450–1040 nm was studied as a non-destructive method to differentiate two cultivars of nectarines with a very similar appearance but different taste. Partial least squares discriminant analysis (PLS-DA) was used to develop a prediction model to distinguish intact fruits of the cultivars using pixel-wise and mean spectrum approaches, and then the model was projected onto the complete surface of fruits allowing visual inspection. The results indicated that mean spectrum of the fruit was the most accurate method, a correct discrimination rate of 94% being achieved. Wavelength selection reduced the dimensionality of the hyperspectral images using the regression coefficients of the PLS-DA model. An accuracy of 96% was obtained by using 14 optimal wavelengths, whereas colour imaging and a trained inspection panel achieved a rate of correct classification of only 57% of the fruits.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.