• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integration of simultaneous tactile sensing and reflectance visible and near-infrared spectroscopy in a robot gripper for mango quality assessment

View/Open
Open 2017_Cortés_Integration_Post-print.pdf (1.847Mb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5733
DOI
10.1016/j.biosystemseng.2017.08.005
URL
http://www.sciencedirect.com/science/article/pii/S1537511017303768
Metadata
Show full item record
Author
Cortés, Victoria; Blanes, Carlos; Blasco, José; Ortiz, Coral; Aleixos, Nuria; Mellado Arteche, Martín; Cubero, Sergio; Talens, Pau
Date
2017
Cita bibliográfica
Cortés V, Blanes C, Blasco J, Ortiz C, Aleixos N, Mellado M, Cubero S, Talens P (2017). Integration of simultaneous tactile sensing and reflectance visible and near-infrared spectroscopy in a robot gripper for mango quality assessment. Biosystems Engineering, 166, 112-123
Abstract
Development of non-destructive tools for determining mango ripeness would improve the quality of industrial production of the postharvest processes. This study addresses the creation of a new sensor that combines the capability of obtaining simultaneously both mechanical and optical properties of the fruit. It has been integrated in a robot gripper that can handle the fruit obtaining non-destructive measurements of firmness, incorporating two spectrometer probes to simultaneously obtain reflectance properties of the visible and near-infrared, and two accelerometers attached to the rear side of two fingers. Partial least square regression was applied to different combinations of the spectra data obtained from the different sensors to determine the combination that provides the best results. Best prediction of ripening index was achieved using both spectral measurements and two finger accelerometers signals, with R2p = 0.832 and RMSEP of 0.520. These results demonstrate that simultaneous measurement and analysis of the data fusion set improve the robot gripper features, allowing to assess the quality of the mangoes during pick and place processes.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.