• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging

View/Open
Open 2017_Munera_Non-Destructive_Post-print.pdf (374.4Kb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5726
DOI
10.1016/j.lwt.2016.11.063.
URL
http://www.sciencedirect.com/science/article/pii/S0023643816307344
Metadata
Show full item record
Author
Munera, SandraAutoridad IVIA; Besada, CristinaAutoridad IVIA; Aleixos, Nuria; Talens, Pau; Salvador, AlejandraAutoridad IVIA; Sun, Da-Wen; Cubero, SergioAutoridad IVIA; Blasco, JoséAutoridad IVIA
Date
2017
Cita bibliográfica
Munera S, Besada C, Aleixos N, Talens P, Salvador A, Sun, D-W, Cubero C, Blasco J (2017) Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT - Food Science and Technology, 77C, 241-248.
Abstract
The internal quality of intact persimmon cv. ‘Rojo Brillante’ was assessed trough visible and near infrared hyperspectral imaging. Fruits at three stages of commercial maturity were exposed to different treatments with CO2 to obtain fruit with different ripeness and level of astringency (soluble tannin content). Spectral and spatial information were used for building classification models to predict ripeness and astringency trough multivariate analysis techniques like linear and quadratic discriminant analysis (LDA and QDA) and support vector machine (SVM). Additionally, flesh firmness was predicted by partial least square regression (PLSR). The full spectrum was used to determine the internal properties and later principal component analysis (PCA) was used to select optimal wavelengths (580, 680 and 1050 nm). The correct classification was above 92% for the three classifiers in the case of ripeness and 95% for QDA in the case of astringency. A value of R2 = 0.80 and a ratio of prediction deviation (RPD) of 1.86 were obtained with the selected wavelengths for the prediction of firmness which demonstrated the potential of hyperspectral imaging as a non-destructive tool in the assessment of the firmness, ripeness state and astringency level of ‘Rojo Brillante’ persimmon.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

RecolectaSherpa RomeoDulcinea

Statistics

View Usage Statistics
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.