• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Visualitza element 
  •   Inici de ReDivia
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Visualitza element
  •   Inici de ReDivia
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Visualitza element
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging

Visualitza/
Open 2017_Munera_Non-Destructive_Post-print.pdf (374.4Kb)
Exporta
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5726
DOI
10.1016/j.lwt.2016.11.063.
URL
http://www.sciencedirect.com/science/article/pii/S0023643816307344
Metadades
Mostra el registre complet de l'element
Autor/a
Munera, SandraAutoridad IVIA; Besada, CristinaAutoridad IVIA; Aleixos, Nuria; Talens, Pau; Salvador, AlejandraAutoridad IVIA; Sun, Da-Wen; Cubero, SergioAutoridad IVIA; Blasco, JoséAutoridad IVIA
Data
2017
Cita bibliográfica
Munera S, Besada C, Aleixos N, Talens P, Salvador A, Sun, D-W, Cubero C, Blasco J (2017) Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT - Food Science and Technology, 77C, 241-248.
Resum
The internal quality of intact persimmon cv. ‘Rojo Brillante’ was assessed trough visible and near infrared hyperspectral imaging. Fruits at three stages of commercial maturity were exposed to different treatments with CO2 to obtain fruit with different ripeness and level of astringency (soluble tannin content). Spectral and spatial information were used for building classification models to predict ripeness and astringency trough multivariate analysis techniques like linear and quadratic discriminant analysis (LDA and QDA) and support vector machine (SVM). Additionally, flesh firmness was predicted by partial least square regression (PLSR). The full spectrum was used to determine the internal properties and later principal component analysis (PCA) was used to select optimal wavelengths (580, 680 and 1050 nm). The correct classification was above 92% for the three classifiers in the case of ripeness and 95% for QDA in the case of astringency. A value of R2 = 0.80 and a ratio of prediction deviation (RPD) of 1.86 were obtained with the selected wavelengths for the prediction of firmness which demonstrated the potential of hyperspectral imaging as a non-destructive tool in the assessment of the firmness, ripeness state and astringency level of ‘Rojo Brillante’ persimmon.
Col·leccions
  • 1.1.- Artículos de revista académica

Visualitza

Tot ReDiviaComunitats i col·leccionsPer data de publicacióAutor/aTítolsMatèriesTemesCentres IVIAAquesta col·leccióPer data de publicacióAutor/aTítolsMatèriesTemesCentres IVIA

El meu compte

EntraRegistre

D'interès

Política d'Accés Obert de l'IVIAPropietat intel·lectual i drets d'autorAutoarxiuPreguntes freqüents

Indexadores

RecolectaSherpa RomeoDulcinea

Estadístiques

Vegeu Estadístiques d'ús
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.