• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Short Exposure to High CO2 and O-2 at Curing Temperature to Control Postharvest Diseases of Citrus Fruit

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5668
DOI
10.1094/PDIS-07-11-0595
URL
https://apsjournals.apsnet.org/doi/10.1094/PDIS-07-11-0595
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Montesinos-Herrero, Clara; Del-Río, Miguel A.; Rojas-Argudo, Cristina; Palou, Lluís
Date
2012
Cita bibliográfica
Montesinos-Herrero, C., del Rio, M.A., Rojas-Argudo, C. & Palou, L. (2012). Short Exposure to High CO2 and O-2 at Curing Temperature to Control Postharvest Diseases of Citrus Fruit. Plant Disease, 96(3), 423-430.
Abstract
Curing of citrus fruit at 30 to 37°C and 90 to 98% relative humidity for 65 to 72 h is an effective alternative to fungicides to control postharvest green and blue molds caused by Penicillium digitatum and P. italicum, respectively. However, commercial adoption is limited because treatment is long and it may harm fruit quality. In order to improve the feasibility of curing, short CO2 or O2 exposures at curing temperature were evaluated on ‘Nadorcott’, ‘Clemenules’, and ‘Ortanique’ mandarin fruit and ‘Valencia’ orange. Fruit were artificially inoculated, exposed 24 h later to air (control); CO2 at 15, 30, 50, or 95 kPa; or O2 at 30 or 45 kPa at 20 or 33°C for 8, 24, or 48 h and incubated at 20°C for 4, 7, or 15 days. Exposure at 33°C with CO2 at 15 kPa for 24 h or O2 at 30 kPa for 48 h effectively controlled both green and blue molds after 7 days of incubation at 20°C; however, control of both diseases was minimal after 15 days. To assess potential induction of disease resistance, fruit were treated as described above, then inoculated after 1, 2, or 5 days at 20°C and evaluated after 3 and 6 more days at 20°C. All of the treatments were ineffective in inducing fruit resistance. Short exposures of citrus fruit to high CO2 or O2 at curing temperatures may be part of a control program alternative to synthetic fungicides, especially for organic fruit markets
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.