• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf.]

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5599
DOI
10.1093/treephys/tpt011
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Martínez-Cuenca, Mary-Rus; Iglesias, Domingo J.; Talón, Manuel; Abadia, Javier; Lopez-Millan, Ana-Flor; Primo-Millo, Eduardo; Legaz, Francisco
Date
2013
Cita bibliográfica
Martinez-Cuenca, M.R., Iglesias, D.J., Talón, M., Abadia, J., Lopez-Millan, Ana-Flor, Primo-Millo, E., Legaz, F. (2013). Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.), Osbeck. x Poncirus trifoliata (L.), Raf.]. Tree physiology, 33(3), 320-329.
Abstract
The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.