• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strategy I responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to iron chlorosis

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5596
DOI
10.1016/j.scienta.2013.01.009
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Martínez-Cuenca, Mary-Rus; Forner-Giner, María A.; Iglesias, Domingo J.; Primo-Millo, Eduardo; Legaz, Francisco
Date
2013
Cita bibliográfica
Martinez-Cuenca, M.R., Forner-Giner, M.A., Iglesias, D.J., Primo-Millo, E., Legaz, F. (2013). Strategy I responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to iron chlorosis. Scientia Horticulturae, 153, 56-63.
Abstract
The expression of iron (Fe) acquisition-related genes in roots was studied in roots of two different citrus seedlings, namely, Carrizo citrange (CC, Fe chlorosis-sensitive) and Cleopatra mandarin (CM, Fe chlorosis-tolerant), growing either with (control) or without (-Fe) Fe in the nutrient solution. Fe-deficiency increased expression of the gene HA] coding for proton-ATPase (H+-ATPase) enzyme in both genotypes, although no differences were observed between treatments among rootstocks. Furthermore, while the gene expression levels of FRO2 - which encodes the Ferric Chelate Reductase (FC-R) enzyme-, increased under -Fe condition in both genotypes, CM always recorded the highest activity. CC showed the greatest induction of genes IRT1 and IRT2 encoding two iron transporters, however only IRT1 was significantly induced by Fe starvation. Analysis of the enzymatic activities (H+-ATPase and FC-R) regulated by the aforementioned genes confirmed these results. Thus, in agreement with the acidification pattern registered, H+-ATPase activities were higher in -Fe plants than in controls, although no significant differences were detected between each treatment among rootstocks. Fe starvation also induced FC-R activity; however, this was greater in CM than in CC roots. Interestingly, root Fe-57 uptake rates from Fe-57-EDDHA solutions were increased by Fe-deficiency, especially in the CM genotype, and CM accumulated a much larger Fe pool in the root apoplast than CC. Taken together, the main trait determining Fe-chlorosis tolerance among these genotypes is the ability to boost Fe3+ reduction in response to Fe-deficiency through enhanced FRO2 gene expression. Moreover, Fe chlorosis resistance in these plants could be related to the amount of Fe stored in the root apoplast. (C) 2013 Elsevier B.V. All rights reserved.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.