• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Ver ítem 
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selection of Optimal Wavelength Features for Decay Detection in Citrus Fruit Using the ROC Curve and Neural Networks

Ver/
Open 2013_Lorente_Selection_Post-print.pdf (234.1Kb)
Exportar
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5544
DOI
10.1007/s11947-011-0737-x
Derechos de acceso
openAccess
Metadatos
Mostrar el registro completo del ítem
Autor
Lorente, Delia; Aleixos, Nuria; Gómez-Sanchís, Juan; Cubero, SergioAutoridad IVIA; Blasco, JoséAutoridad IVIA
Fecha
2013
Cita bibliográfica
Lorente, Delia, Aleixos, N., Gomez-Sanchis, J., Cubero, Sergio, Blasco, J. (2013). Selection of Optimal Wavelength Features for Decay Detection in Citrus Fruit Using the ROC Curve and Neural Networks. Food and Bioprocess Technology, 6(2), 530-541.
Resumen
Early automatic detection of fungal infections in post-harvest citrus fruits is especially important for the citrus industry because only a few infected fruits can spread the infection to a whole batch during operations such as storage or exportation, thus causing great economic losses. Nowadays, this detection is carried out manually by trained workers illuminating the fruit with dangerous ultraviolet lighting. The use of hyperspectral imaging systems makes it possible to advance in the development of systems capable of carrying out this detection process automatically. However, these systems present the disadvantage of generating a huge amount of data, which must be selected in order to achieve a result that is useful to the sector. This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images. The classifier used is a multilayer perceptron, trained with a new learning algorithm called extreme learning machine. The results are obtained using images of mandarins with the pixels labelled in five different classes: two kinds of sound skin, two kinds of decay and scars. This method yields a reduced set of features and a classification success rate of around 89%.
Colecciones
  • 1.1.- Artículos de revista académica

Listar

Todo ReDiviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIAEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIA

Mi cuenta

AccederRegistro

De interés

Política de Acceso Abierto del IVIAPropiedad intelectual y derechos de autorAutoarchivoPreguntas frecuentes

Indexadores

RecolectaSherpa RomeoDulcinea

Estadísticas

Ver Estadísticas de uso
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.