• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach

View/Open
Open 2010_López-García_Automatic_Post-print.pdf (591.8Kb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5531
DOI
10.1016/j.compag.2010.02.001
Derechos de acceso
openAccess
Metadata
Show full item record
Author
López-García, Fernando; Andreu-Garcia, Gabriela; Blasco, José; Aleixos, Nuria; Valiente, José Miguel
Date
2010
Cita bibliográfica
Lopez-Garcia, F., Andreu-Garcia, Gabriela, Blasco, J., Aleixos, N., Valiente, J.M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71(2), 189-197.
Abstract
One of the main problems in the post-harvest processing of citrus is the detection of visual defects in order to classify the fruit depending on their appearance. Species and cultivars of citrus present a high rate of unpredictability in texture and colour that makes it difficult to develop a general, unsupervised method able of perform this task. In this paper we study the use of a general approach that was originally developed for the detection of defects in random colour textures. It is based on a Multivariate Image Analysis strategy and uses Principal Component Analysis to extract a reference eigenspace from a matrix built by unfolding colour and spatial data from samples of defect-free peel. Test images are also unfolded and projected onto the reference eigenspace and the result is a score matrix which is used to compute defective maps based on the T(2) statistic. In addition, a multiresolution scheme is introduced in the original method to speed up the process. Unlike the techniques commonly used for the detection of defects in fruits, this is an unsupervised method that only needs a few samples to be trained. It is also a simple approach that is suitable for real-time compliance. Experimental work was performed on 120 samples of oranges and mandarins from four different cultivars: Clemenules, Marisol. Fortune, and Valencia. The success ratio for the detection of individual defects was 91.5%, while the classification ratio of damaged/sound samples was 94.2%. These results show that the studied method can be suitable for the task of citrus inspection. (C) 2010 Elsevier B.V. All rights reserved.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.