• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon balance of citrus plantations in Eastern Spain

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5372
DOI
10.1016/j.agee.2013.03.015
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Iglesias, Domingo J.; Quinones, Ana; Font, Antonio; Martínez-Alcántara, Belén; Forner-Giner, María A.; Legaz, Francisco; Primo-Millo, Eduardo
Date
2013
Cita bibliográfica
Iglesias, D.J., Quinones, A., Font, A., Martínez-Alcántara, B., Forner-Giner, M.A., Legaz, F., Primo-Millo, E. (2013). Carbon balance of citrus plantations in Eastern Spain. Agriculture Ecosystems & Environment, 171, 103-111.
Abstract
Global warming due to the continuous rise in CO2 emissions has been documented in the last few decades. This work is a first effort to estimate the net carbon incorporation in citrus plantations cultivated under typical land use. The approach involves a biomass-based study of carbon accumulation and a complementary analysis of the associated CO2 fluxes. The total C content allocated to trees aged 2-14 years was determined through the direct and destructive harvesting of all tree organs. A stable pattern of biomass production in tree components was observed in plants 12 years old and older and was responsible for the sequestration of more than 50 kg C tree(-1). Annual C fixation in fruit and new vegetative flushes accounted for up to approximately 75% of the total amount sequestered per year, whereas the contribution of the old, permanent organs (branches', trunk, and tap-coarse roots) was minor (approximately 25%). Further experiments were conducted on adult 12-year-old trees to confirm the data and determine the particular contribution of CO2 fluxes from tree organs and soil to the final values. Data revealed that leaves were responsible for a total net C fixation of 15.4 Mg C ha(-1) yr(-1) (higher than 55% of the total C fixed). The complementary, regular monitoring of fruit respiration rates showed that fruit respiration played only a minor role, responsible for the emission of 2.3 Mg C ha(-1) yr(-1). Minimum losses were also found when soil respiration rates were investigated, accounting for a total annual C loss of 2.7 Mg C ha(-1) yr(-1). Taken together, these results indicate that our plantation was responsible for a net C fixation of close to 10 Mg C ha(-1) yr(-1). Assimilatory processes in leaves accounted for the highest proportion of C allocated to the tree, while losses due to leaf and fruit respiration were of minor importance. Under typical culture conditions (drip irrigation and absence of ground cover), soil respiration rates accounted for a low level of C loss to the atmosphere. Because citrus is the second largest fruit crop cultivated in the EU, such data are very relevant to the mitigation of climate change. (C) 2013 Elsevier B.V. All rights reserved.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.