• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5319
DOI
10.1016/j.eswa.2011.07.073
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Gómez-Sanchís, Juan; Martín-Guerrero, José D.; Soria-Olivas, Emilio; Martinez-Sober, Marcelino; Magdalena-Benedito, Rafael; Blasco, José
Date
2012
Cita bibliográfica
Gomez-Sanchis, J., Martin-Guerrero, J. D., Soria-Olivas, Emilio, Martinez-Sober, Marcelino, M.-Benedito, Rafael, Blasco, J. (2012). Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780-785.
Abstract
Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.