• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5315
DOI
10.1016/j.jfoodeng.2008.04.009
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Gómez-Sanchís, Juan; Gomez-Chova, L.; Aleixos, Nuria; Camps-Valls, G.; Montesinos-Herrero, Clara; Moltó, Enrique; Blasco, José
Date
2008
Cita bibliográfica
Gomez-Sanchis, J., Gomez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., Blasco, J. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80-86.
Abstract
Nowadays, the detection of fruit infected with Penicillium sp. fungi on packing lines is carried out manually under ultraviolet illumination. Ultraviolet sources induce visible fluorescence of essential oils present in the skin of citrus and which are released by the action of fungi, thus increasing the contrast between sound and rotten skin. This work analyses a set of techniques aimed at detecting rotten citrus without the use of UV lighting. The techniques used include hyperspectral image acquisition, preprocessing and calibration, feature selection and segmentation using linear and non-linear methods for classification of fruits. Different methods such as correlation analysis, mutual information, stepwise, and genetic algorithms based on linear discriminant analysis (LDA) are studied to select the most relevant bands. image segmentation relies on the combination of efficient band selection techniques and also on pixel classification methods such as classification and regression trees (CART) and LDA. The results were obtained using a large dataset of images of mandarins cv. "Clemenules" by applying the CART method. The hyperspectral computer vision system proposed here is capable of detecting damage caused by Penicillium digitatum in mandarins using a reduced set of optimally selected bands.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.