• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.4.- Proceedings
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.4.- Proceedings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentation of hyperspectral images for the detection of rotten mandarins

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5314
DOI
10.1007/978-3-540-69812-8_107
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Gómez-Sanchís, Juan; Camps-Valls, G.; Moltó, Enrique; Gomez-Chova, L.; Aleixos, Nuria; Blasco, José
Date
2008
Cita bibliográfica
Gómez-Sanchis J., Camps-Valls G., Moltó E., Gómez-Chova L., Aleixos N., Blasco J. (2008) Segmentation of Hyperspectral Images for the Detection of Rotten Mandarins. In: Campilho A., Kamel M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg, pp. 1071-1080.
Abstract
The detection of rotten citrus in packing lines is carried out manually under ultraviolet illumination, which is dangerous for workers. Light emitted by the rotten region of the fruit due to the ultraviolet-induced fluorescence is used by the operator to detect the damages. This procedure is required because the low contrast between the damaged and sound skin under visible illumination difficult their detection. We study a set of techniques aimed to detect rottenness in citrus using visible and near infrared lighting trough an hyperspectral imaging system. Methods for selecting a proper set of wavelengths are investigated such as correlation analysis, mutual information, stepwise or genetic algorithms. The image segmentation relies on the combination of band selection techniques and pixel classification methods such as classification and regression trees and linear discriminant analysis.
Collections
  • 1.4.- Proceedings

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.