Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon 'Rojo Brillante'
Derechos de acceso
openAccessMetadata
Show full item recordDate
2013Cita bibliográfica
Ghidelli, Christian, Rojas-Argudo, C., Mateos, Milagros, Pérez-Gago, María B. (2013). Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon 'Rojo Brillante'. Postharvest Biology and Technology, 86, 487-493.Abstract
'Rojo Brillante' is an important variety of persimmon that after removal of the astringency with high levels of CO2, maintains firmness and sweetness, making possible its commercialization as a fresh-cut commodity. However, the commercial success of the product is limited mainly by enzymatic browning. This work presents the effect of a wide range of antioxidants on enzymatic browning of 'Rojo Brillante' persimmon combining in vitro (extracts and precipitates) and in vivo (cut tissue) studies. Preliminary screening of the antioxidants, determined by absorbance and color measurements of persimmon extracts and pellets, showed that 4-hexylresorcinol (Hexyl), citric acid (CA) and calcium chloride (CaCl2) were effective at controlling browning at 10 mM; whereas, ascorbic acid (AA) required a higher concentration (25 mM). Peracetic acid, cyclodextrin, cysteine, and hexametaphosphate were not effective at controlling browning, even at a concentration of 50 mM. In in vivo studies, AA (1.12%) and CA (0.21%) were the most effective treatments to control enzymatic browning of fresh-cut material, reaching the limit of marketability in 5-7 days, whereas, Hexyl and CaCl2 did not reach 1 day of storage. The results showed that optimum concentrations in cut tissue did not always correlate with the in vitro studies, indicating that antioxidants have an effect not only in browning reactions, but also in metabolic activity and cell wall changes during wound-induced reactions. The results provide relevant information for further development of minimally processed 'Rojo Brillante' persimmon during storage at 5 degrees C. (C) 2013 Elsevier B.V. All rights reserved.