• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: New insights into real environmental impact of perennial plants engineered for virus resistance

Search in Dimension
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5215
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Fuchs, M.; Cambra, Mariano; Capote, Nieves; Jelkmann, W.; Kundu, J.; Laval, V.; Martelli, G. P.; Minafra, Angelantonio; Petrovic, N.; Pfeiffer, P.; Pompe-Novak, M.; Ravelonandro, M.; Saldarelli, Pasquale; Stussi-Garaud, C.; Vigne, E.; Zagrai, Luminita Antonela
Date
2007
Cita bibliográfica
Fuchs, M., Cambra, M., Capote, N., Jelkmann, W., Kundu, J., Laval, V. et al. (2007). Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: New insights into real environmental impact of perennial plants engineered for virus resistance. Journal of Plant Pathology, 89(1), 5-12.
Abstract
The potential impact of transgenic plums and grapevines expressing viral coat protein (CP) gene constructs on the diversity and dynamics of virus populations was assessed under open and confined conditions in the frame of a research program sponsored by the European Commission. Across all field trials conducted in different locations (France, Romania, and Spain) and environments (continental and Mediterranean), transgenic plums expressing the CP gene of Plum pox virus (PPV) and transgenic grapevines expressing the CP gene of Grapevine Janleaf virus (GFLV) had no detectable effect on the emergence of recombinant PPV and GFLV species over eight-ten and three years, respectively. Also, no statistically significant difference was found in the number and type of aphids, including viruliferous individuals, and other arthropods that visited transgenic and nontransgenic plum trees. In addition, Apple chlorotic leaf spot virus, Prune dwarf virus, and Prunus necrotic ringspot virus did not influence the stability of the engineered resistance to PPV in co-infected transgenic plums over three dormancy periods. Further, under confined conditions, no recombinant virus was found to detectable level in transgenic grapevines expressing the CP gene of Grapevine virus A (GVA) or Grapevine virus B (GVB) that were challenged with the homologous or heterologous virus, despite high accumulation of transgene transcripts. Also, translocation of transgene-derived products, i.e. protein, mRNAs and siRNAs, did not occur to detectable level from transgenic grapevine rootstocks expressing the GFLV CP gene to nontransgenic scions. Altogether, our transgenic plums and grapevines expressing viral genes had a neutral impact on virus populations and non-target organisms over extended time. These findings provide new insights into the environmental impact of transgenic perennial crops engineered for virus resistance. It is expected that they will assist national and international regulatory authorities in making scientifically based decisions for the release of virus-resistant transgenic crops.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.