• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Ver ítem 
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

In-line sorting of irregular potatoes by using automated computer-based machine vision system

Exportar
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5159
DOI
10.1016/j.jfoodeng.2012.03.027
Derechos de acceso
openAccess
Metadatos
Mostrar el registro completo del ítem
Autor
ElMasry, Gamal; Cubero, SergioAutoridad IVIA; Moltó, EnriqueAutoridad IVIA; Blasco, JoséAutoridad IVIA
Fecha
2012
Cita bibliográfica
ElMasry, Gamal, Cubero, Sergio, Molto, E., Blasco, J. (2012). In-line sorting of irregular potatoes by using automated computer-based machine vision system. Journal of Food Engineering, 112(1-2), 60-68.
Resumen
This study was conducted to develop a fast and accurate computer-based machine vision system for detecting irregular potatoes in real-time. Supported algorithms were specifically developed and programmed for image acquisition and processing, controlling the whole process, saving the classification results and monitoring the progress of all operations. A database of images was first formulated from potatoes with different shapes and sizes, and then some essential geometrical features such as perimeter, centroid, area, moment of inertia, length and width were extracted from each image. Also, eight shape parameters originated from size features and Fourier transform were calculated for each image in the database. All extracted shape parameters were entered in a stepwise linear discriminant analysis to extract the most important parameters that most characterized the regularity of potatoes. Based on stepwise linear discriminant analysis, two shape features (roundness and extent) and four Fourier-shape descriptors were found to be effective in sorting regular and irregular potatoes. The average correct classification was 96.5% for a training set composed of 228 potatoes and then the algorithm was validated in another testing set composed of 182 potatoes in a real-time operation. The experiments showed that the success of in-line classification of moving potatoes was 96.2%. Concurrently, the well-shaped potatoes were classified by size achieving a 100% accuracy indicating that the developed machine vision system has a great potential in automatic detection and sorting of misshapen products. (c) 2012 Elsevier Ltd. All rights reserved.
Colecciones
  • 1.1.- Artículos de revista académica

Listar

Todo ReDiviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIAEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIA

Mi cuenta

AccederRegistro

De interés

Política de Acceso Abierto del IVIAPropiedad intelectual y derechos de autorAutoarchivoPreguntas frecuentes

Indexadores

RecolectaSherpa RomeoDulcinea

Estadísticas

Ver Estadísticas de uso
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.