• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constitutive Expression of OsGH3.1 Reduces Auxin Content and Enhances Defense Response and Resistance to a Fungal Pathogen in Rice

View/Open
Open 2009_Domingo_Constitutive.pdf (338.5Kb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5142
DOI
10.1094/MPMI-22-2-0201
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Domingo, ConchaAutoridad IVIA; Andres, Fernando; Tharreau, Didier; Iglesias, Domingo J.Autoridad IVIA; Talón, ManuelAutoridad IVIA
Date
2009
Cita bibliográfica
Domingo, C., Andres, F., Tharreau, Didier, Iglesias, D.J., Talón, M. (2009). Constitutive Expression of OsGH3.1 Reduces Auxin Content and Enhances Defense Response and Resistance to a Fungal Pathogen in Rice. Molecular Plant-Microbe Interactions, 22(2), 201-210.
Abstract
GH3 genes are main components of the hormonal mechanism regulating growth and development and, hence, are deeply involved in a broad range of physiological processes. They are implicated in hormonal homeostasis through the conjugation to amino acids of the free form of essential plant growth regulators such as indoleacetic and jasmonic acids. In this work, we showed that OsGH3.1 overexpression in rice caused dwarfism and significantly reduced both free auxin content and cell elongation. Functional classification of the transcriptomic profiling revealed that most genes involved in auxin biosynthesis and auxin signaling inhibition were induced and repressed, respectively. Many genes related to cell organization and biogenesis were also significantly downregulated. The survey also showed that, although the response to abiotic stresses was not clearly stimulated, OsGH3.1 overexpression did activate a significant number of defense-related genes. In successive bioassays, it was demonstrated that the resistance of rice plants to pathogen infection, evaluated with two different Magnaporthe grisea strains, was higher in the transformants overexpressing OsGH3.1. Taken together, these results indicate that OsGH3.1 overexpression reduces auxin content, inhibits cell growth and cell wall loosening, and enhances resistance to a fungal pathogen. Our results provide evidence that auxin homeostasis can regulate the activation of the defense response in rice.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

RecolectaSherpa RomeoDulcinea

Statistics

View Usage Statistics
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.