• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Ver ítem 
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress

Ver/
Open 2014_Delalieux_Unmixing-Based_Post-print.pdf (1.487Mb)
Exportar
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5119
DOI
10.1109/JSTARS.2014.2330352
Derechos de acceso
openAccess
Metadatos
Mostrar el registro completo del ítem
Autor
Delalieux, Stephanie; Zarco-Tejada, Pablo J.; Tits, Laurent; Jimenez Bello, Miguel Angel; Intrigliolo, Diego S.; Somers, Ben
Fecha
2014
Cita bibliográfica
Delalieux, Stephanie, Zarco-Tejada, P. J., Tits, Laurent, Jimenez Bello, Miguel Angel, Intrigliolo, Diego S., Somers, Ben (2014). Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2571-2582.
Resumen
Many applications require a timely acquisition of high spatial and spectral resolution remote sensing data. This is often not achievable since spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while airborne sensors mounted on a manned aircraft are too expensive to acquire a high temporal resolution. This gap between information needs and data availability inspires research on using Remotely Piloted Aircraft Systems (RPAS) to capture the desired high spectral and spatial information, furthermore providing temporal flexibility. Present hyperspectral imagers on board lightweight RPAS are still rare, due to the operational complexity, sensor weight, and instability. This paper looks into the use of a hyperspectral-hyperspatial fusion technique for an improved biophysical parameter retrieval and physiological assessment in agricultural crops. First, a biophysical parameter extraction study is performed on a simulated citrus orchard. Subsequently, the unmixing-based fusion is applied on a real test case in commercial citrus orchards with discontinuous canopies, in which a more efficient and accurate estimation of water stress is achieved by fusing thermal hyperspatial and hyperspectral (APEX) imagery. Narrowband reflectance indices that have proven their effectiveness as previsual indicators of water stress, such as the Photochemical Reflectance Index (PRI), show a significant increase in tree water-stress detection when applied on the fused dataset compared to the original hyperspectral APEX dataset (R-2 = 0.62, p 0.1). Maximal R-2 values of 0.93 and 0.86 are obtained by a linear relationship between the vegetation index and the resp., water and chlorophyll, parameter content maps.
Colecciones
  • 1.1.- Artículos de revista académica

Listar

Todo ReDiviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIAEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIA

Mi cuenta

AccederRegistro

De interés

Política de Acceso Abierto del IVIAPropiedad intelectual y derechos de autorAutoarchivoPreguntas frecuentes

Indexadores

RecolectaSherpa RomeoDulcinea

Estadísticas

Ver Estadísticas de uso
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.