• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/5096
DOI
10.1007/s11119-015-9392-y
URL
https://link.springer.com/article/10.1007%2Fs11119-015-9392-y
Derechos de acceso
openAccess
Metadata
Show full item record
Author
De-Paz, José M.; Albert, C.; Visconti, Fernando; Jimenez, M. G.; Ingelmo, Florencio; Molina, María J.
Date
2015
Cita bibliográfica
De Paz, J.M., Albert, C., Visconti, F., Jimenez, M. G., Ingelmo, F., Molina, M.J. (2015). A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS. Precision Agriculture, 16(5), 505-531.
Abstract
Soil hydraulic parameters are important for irrigation scheduling. In the domain of “precision irrigation”, knowledge of the spatial distribution of these parameters is useful in determining the maximum irrigation rate for each field in a catchment. This study focuses on the development of a new methodology to assess the spatial distribution of the maximum irrigation rate depending on the available soil water holding capacity (ASWHC). This methodology combines geostatistical techniques with geographical information system (GIS) tools. A pilot zone of 12 400 ha in a Spanish Mediterranean area was selected to develop this methodology. The linear coregionalization model (LMCR), considering the percentage of sand, carbonates, and ASWHC at others soil depths as covariates, was the best option to model the ASWHC. Other required soil parameters were also spatially modeled. The percent of coarse fragments was modeled by regression kriging considering the soil map as an auxiliary variable. The bulk density was spatially modeled by LMCR, and extended to the rooting depth by linear regression. The spatial distributions modeled were implemented in a GIS with other spatial information layers of irrigation management parameters, such as the maximum allowable depletion of soil water content, the percent of wetted soil and the irrigation depth. The combination of these layers in the GIS was used to estimate the maximum irrigation rates for each field. A propagation error analysis was performed to know the uncertainties in the maximum irrigation rate estimation. Based on this information, the irrigation managers could optimize the irrigation rates for each field.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.