• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Ver ítem 
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
  •   ReDivia Principal
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision

Exportar
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4870
DOI
10.1016/j.jfoodeng.2008.05.035
Derechos de acceso
openAccess
Metadatos
Mostrar el registro completo del ítem
Autor
Blasco, JoséAutoridad IVIA; Cubero, SergioAutoridad IVIA; Gómez-Sanchís, Juan; Mira, P.; Moltó, EnriqueAutoridad IVIA
Fecha
2009
Cita bibliográfica
Blasco, J., Cubero, S., Gomez-Sanchis, J., Mira, P., Moltó, E. (2009). Development of a machine for the automatic sorting of pomegranate (Punica granatum), arils based on computer vision. Journal of Food Engineering, 90(1), 27-34.
Resumen
The pomegranate is a fruit with excellent organoleptic and nutritional properties, but the fact that it is difficult to peel affects its commercialisation and decreases its potential consumption. One solution is to market the arils of pomegranate in a ready-to-eat form. However, after the peeling process, unwanted material, such as internal membranes and defective arils, is extracted together with good arils and must be removed on the packing line because the presence of such material shortens the shelf life of the product or deteriorates its appearance. For different reasons, the commercial sorting machines that are currently available for similar commodities (cherries, nuts, rice, etc.) are not capable of handling and sorting pomegranate arils, thus making it necessary to build specific equipment. This work describes the development of a computer vision-based machine to inspect the raw material coming from the extraction process and classify it in four categories. The machine is capable of detecting and removing unwanted material and sorting the arils by colour. The prototype is composed of three units, which are designed to singulate the objects to allow them be inspected individually and sorted. The inspection unit relies on a computer vision system. Two image segmentation methods were tested: one uses a threshold on the R/G ratio and the other is a more complex approach based on Bayesian Linear Discriminant Analysis (LDA) in the RGB space. Both methods offered an average success rate of 90% on a validation set, the former being more intuitive for the operators, as well as faster and easier to implement, and for these reasons it was included in the prototype. Subsequently, the complete machine was tested in industry by working in real conditions throughout a whole pomegranate season, in which it automatically sorted more than nine tons of arils.
Colecciones
  • 1.1.- Artículos de revista académica

Listar

Todo ReDiviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIAEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTemasCentros IVIA

Mi cuenta

AccederRegistro

De interés

Política de Acceso Abierto del IVIAPropiedad intelectual y derechos de autorAutoarchivoPreguntas frecuentes

Indexadores

RecolectaSherpa RomeoDulcinea

Estadísticas

Ver Estadísticas de uso
Creative Commons License

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.