• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4865
DOI
10.1016/j.jfoodeng.2006.12.007
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Blasco, José; Aleixos, Nuria; Moltó, Enrique
Date
2007
Cita bibliográfica
Blasco, J., Aleixos, N., Moltó, E. (2007). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering, 81(3), 535-543.
Abstract
Due to the high sorting speed required during fruit inspection and classification in packing lines, most of the current automatic systems, based on machine vision, normally employ supervised techniques oriented towards individual pixels to segment the images of the fruits. These techniques require previous training given by experts in order to classify the colour of each pixel as belonging to any of the regions of interest and frequent training sessions during normal operation throughout the season to adapt the system to the great colour variability present in biological products like fruits. In region-oriented segmentation algorithms, however, the contrast between different areas in the image becomes more important than the individual pixel colour, thus solving the problem related to the variability of the natural colour of fruits. This work proposes a region-oriented segmentation algorithm for detecting the most common peel defects of citrus fruits. Focused on the detection of the regions of interest consisting of the sound peel, the stem and the defects, this method is an original contribution that allows successful segmentation of smaller defects, such as scale. The algorithm was tested on images of different varieties of oranges and mandarins presenting defects, without any further training being given between inspections of different batches, even species, of citrus fruits. Assuming that the most surface of the fruit corresponds to sound peel, the proposed algorithm was able to correctly detect 95% of the defects under study. (c) 2006 Elsevier Ltd. All rights reserved.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.