• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
Visualitza element 
  •   Inici de ReDivia
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Visualitza element
  •   Inici de ReDivia
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • Visualitza element
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features

Exporta
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4858
DOI
10.1016/j.biosystemseng.2009.03.009
Derechos de acceso
openAccess
Metadades
Mostra el registre complet de l'element
Autor/a
Blasco, José; Aleixos, Nuria; Gómez-Sanchís, Juan; Moltó, Enrique
Data
2009
Cita bibliográfica
Blasco, J., Aleixos, N., Gomez-Sanchis, J., Molto, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103(2), 137-145.
Resum
The computer vision systems currently used for the automatic inspection of citrus fruits are normally based on supervised methods that are capable of detecting defects on the surface of the fruit but are unable to discriminate between different types of defects. identifying the type of the defect affecting each fruit is very important in order to optimise the marketing profit and to be able to take measures to prevent such defects from occurring in the future. In this paper, we present a computer vision system that was developed for the recognition and classification of the most common external defects in citrus. in order to discriminate between 11 types of defects, images of the defects were acquired in five spectral areas, including the study of near infrared reflectance and ultraviolet induced fluorescence. The system combines spectral information about the defects with morphological estimations of them in order to classify the fruits in categories. The fruit-sorting algorithm proposed here was tested by using it to identify the defects in more than 2000 citrus fruits, including mandarins and oranges. The overall success rate reached 86%.
Col·leccions
  • 1.1.- Artículos de revista académica

Visualitza

Tot ReDiviaComunitats i col·leccionsPer data de publicacióAutor/aTítolsMatèriesTemesCentres IVIAAquesta col·leccióPer data de publicacióAutor/aTítolsMatèriesTemesCentres IVIA

El meu compte

EntraRegistre

Estadístiques

Vegeu Estadístiques d'ús

D'interès

Política d'Accés Obert de l'IVIAPropietat intel·lectual i drets d'autorAutoarxiuPreguntes freqüents

Indexadores

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.