• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conventional and Real-Time PCRs for Detection of Erwinia piriflorinigrans Allow Its Distinction from the Fire Blight Pathogen, Erwinia amylovora

Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4785
DOI
10.1128/AEM.03626-13
URL
https://journals.asm.org/doi/10.1128/AEM.03626-13
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo; López, María M.
Date
2014
Cita bibliográfica
Barbe, S., Bertolini, E., Rosello, M., Llop, P. & Lopez, M. M. (2014). Conventional and Real-Time PCRs for Detection of Erwinia piriflorinigrans Allow Its Distinction from the Fire Blight Pathogen, Erwinia amylovora. Applied and Environmental Microbiology, 80(8), 2390-2398.
Abstract
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 10(3) cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 10(2) cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.