Show simple item record

dc.contributor.authorZuriaga, Elena
dc.contributor.authorMolina, Laura
dc.contributor.authorBadenes, María L.
dc.contributor.authorRomero, Carlos
dc.date.accessioned2017-06-01T10:10:59Z
dc.date.available2017-06-01T10:10:59Z
dc.date.issued2012
dc.identifier.citationZuriaga, E., Molina, L., Badenes, M.L., Romero, C. (2012). Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. Plant Molecular Biology, 79(3), 229-242.
dc.identifier.issn0167-4412
dc.identifier.urihttp://hdl.handle.net/20.500.11939/4780
dc.description.abstractlocus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in . However, accumulated genetic evidence suggests that other -locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the -locus in the apricot ( L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (-locus) and the synteny analysis of the -locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the -locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The -locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to similar to 364 Kb in the peach ( L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple ( x Borkh.) LG17/9 and strawberry ( L.) FG6 chromosomes. The -locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in . In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.
dc.language.isoen
dc.titlePhysical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae
dc.typearticle
dc.authorAddressInstituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km. 10’7, 46113 Moncada (Valencia), Españaes
dc.date.issuedFreeFormJUN 2012
dc.entidadIVIACentro de Citricultura y Producción Vegetal
dc.identifier.doi10.1007/s11103-012-9908-z
dc.journal.abbreviatedTitlePlant Mol.Biol.
dc.journal.issueNumber3
dc.journal.titlePlant Molecular Biology
dc.journal.volumeNumber79
dc.page.final242
dc.page.initial229
dc.rights.accessRightsopenAccess
dc.source.typeImpreso
dc.type.hasVersionacceptedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record