• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Usefulness of thermography for plant water stress detection in citrus and persimmon trees

View/Open
Open 2013_Ballester_Usefulness_Post-print.pdf (871.2Kb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4772
DOI
10.1016/j.agrformet.2012.08.005
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Ballester, Carlos; Jiménez-Bello, Miguel Ángel; Castel, Juan R.; Intrigliolo, Diego S.
Date
2013
Cita bibliográfica
Ballester, C., Jimenez-Bello, M.A., Castel, Juan R., Intrigliolo, Diego S. (2013). Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest Meteorology, 168, 120-129.
Abstract
The feasibility of using canopy temperature (T-c) measured with a hand-operated infrared thermographic camera as a water stress indicator was evaluated in the field during two seasons on citrus and persimmon trees subjected to different levels of deficit irrigation. In both species, which differ in leaf anatomy and stomatal response to environmental conditions, T-c, was compared with midday stem water potential (Psi(s)) measurements. In persimmon trees, leaf stomatal conductance (g(s)) was also measured. In 2009, images were taken from the sunlit and shady sides of the canopies. Based on the results obtained, during the second experimental season images were taken from the sunlit side of the trees and also from above the canopy. In persimmon, trees under deficit irrigation had lower Psi(s) and g(s) what resulted in a clear increase in T-c regardless of the position from where the pictures were taken. The maximum T-c difference between deficit-irrigated and control trees observed was of 4.4 degrees C, which occurred when the stressed trees had Psi(s) values 1.1 MPa lower than the control ones. In persimmon trees, T-c was the most sensitive indicator of plant water status particularly due to the lower tree-to-tree variability as compared to Psi(s) and g(s). On the other hand, in citrus trees T-c was not always affected by plant water stress. Only in the second experimental season, when air vapour pressure deficit values were below 2.7 kPa and images were also taken from above the canopies, deficit-irrigated trees had higher T-c than the control ones, this difference being at most 1.7 degrees C. Overall, the results show that hand-operated thermographic cameras can be used to detect plant water stress in both fruit tree species. Nevertheless, the use of T-c measurements to detect plant water stress appears to be more precise in persimmon than in orange citrus. This might be because persimmon trees have larger leaf size which determines higher canopy resistance allowing for higher increases in canopy temperature in response to water stress via stomatal closure. (C) 2012 Elsevier B.V. All rights reserved.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.