Show simple item record

dc.contributor.authorWalia, Jeewan Jyot
dc.contributor.authorWillemsen, Anouk
dc.contributor.authorElci, Eminur
dc.contributor.authorCaglayan, Kadriye
dc.contributor.authorFalk, Bryce W.
dc.contributor.authorRubio, Luis
dc.date.accessioned2017-06-01T10:10:57Z
dc.date.available2017-06-01T10:10:57Z
dc.date.issued2014
dc.identifier.citationWalia, Jeewan Jyot, Willemsen, Anouk, Elci, Eminur, Caglayan, Kadriye, Falk, Bryce W., Rubio, L. (2014). Genetic Variation and Possible Mechanisms Driving the Evolution of Worldwide Fig mosaic virus Isolates. Phytopathology, 104(1), 108-114.
dc.identifier.issn0031-949X; 1943-7684
dc.identifier.urihttp://hdl.handle.net/20.500.11939/4771
dc.description.abstractFig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
dc.language.isoen
dc.titleGenetic Variation and Possible Mechanisms Driving the Evolution of Worldwide Fig mosaic virus Isolates
dc.typearticle
dc.authorAddressInstituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km. 10’7, 46113 Moncada (Valencia), Españaes
dc.date.issuedFreeFormJAN 2014
dc.entidadIVIACentro de Protección Vegetal y Biotecnología
dc.identifier.doi10.1094/PHYTO-05-13-0145-R
dc.journal.abbreviatedTitlePhytopathology
dc.journal.issueNumber1
dc.journal.titlePhytopathology
dc.journal.volumeNumber104
dc.page.final114
dc.page.initial108
dc.rights.accessRightsopenAccess
dc.source.typeImpreso


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record