• Castellano
  • English
  • Valenciá
Página de inicio de ReDivia
Página de la Generalitat ValenciáPágina de IVIA
View Item 
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
  •   ReDivia Home
  • 1.- Investigación
  • 1.1.- Artículos de revista académica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus

View/Open
Open 2015_Salcedo_Design_Post-print.pdf (307.8Kb)
Export
untranslatedRefworks
URI
http://hdl.handle.net/20.500.11939/4466
DOI
10.1016/j.compag.2015.06.005
Derechos de acceso
openAccess
Metadata
Show full item record
Author
Salcedo, Ricardo; Granell, Rafael; Palau, G.; Vallet, Ariane; Garcerá, Cruz; Chueca, Patricia; Moltó, Enrique
Date
2015
Cita bibliográfica
Salcedo, R., Granell, R., Palau, G., Vallet, A., Garcera, C., Chueca, P. & Molto, E. (2015). Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus. Computers and Electronics in Agriculture, 116, 150-161.
Abstract
During plant protection treatments using airblast sprayers, part of the chemical is lost in the atmosphere (spray drift), ground, surface water, etc., causing risks to the environment. Although there is a growing interest in quantifying these losses, field measurements are extraordinarily complex and expensive. Computational Fluid Dynamics (CFD) generates mathematical models of this phenomenon that may help to understand and quantify it. The air flow produced by the fan is affected by the tree canopies, which modify the trajectories of spray droplets. Current state of the art in CFD considers canopies as porous bodies and uses the k-epsilon turbulence model. In a first step, this work proposes and validates a two dimensional CFD model to be applied in citrus tree applications from experimental data. This new CFD model considers canopies as solid bodies. Four different geometries for the first tree are compared using three different turbulence models: k-epsilon, SST k-omega and Reynolds Stress Model. Air velocities measured in front of a canopy in a previous field test are introduced as boundary conditions. We used the experimental data to adjust the model and select the geometry and the turbulence model. In order to test the validity of the model, air velocities obtained with the model are compared with the experimental data obtained in other experiment. The final CFD model was able to reproduce the airflow behaviour around the tree canopy, with the same turbulent structures. The solid body with the new turbulence model (SST k-omega) was considered as a good approximation to the real life.
Collections
  • 1.1.- Artículos de revista académica

Browse

All of ReDiviaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA CentersThis CollectionBy Issue DateAuthorsTitlesSubjetcsCategoriesIVIA Centers

My Account

LoginRegister

Statistics

View Usage Statistics

Of interest

IVIA Open Access PolicyIntellectual property and copyrightAutoarchiveFrequently Asked Questions

Indexers

Recolectauntranslated

El contenido de este sitio está bajo una licencia Creative Commons - No comercial - Sin Obra Derivada (by-nc-nd), salvo que se indique lo contrario.