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In the study of plant disease epidemics, the state of each individual in the popula-
tion and their spatial location should be considered when modeling disease spread. We
present a model to describe the spread of plant diseases, where the infection of a suscep-
tible individual depends on the transmission rate of infected individuals and the spatial
correlation. This latter is introduced through the Matérn correlation function, account-
ing for spatial dependence based on distance. Almond leaf scorch disease, caused by the
bacterium Xylella fastidiosa, was used as a case study to test the behavior of the model
parameters and the variability due to the characteristics and location of initial disease
introduction using a proposed simulation algorithm. The greatest variability in the results
depended on the range parameter of the Matérn correlation, i.e., the distance at which
two observations can be considered spatially uncorrelated, and the initial introduction.
The spatial distribution of individuals also had a strong influence on disease spread,
highlighting that areas without trees acted as barriers when their extent was greater than
the range parameter. It should be stressed that this individual-based model can be applied
to other plant diseases, adapting the parameter values to their particular epidemiological
characteristics.

KeyWords: Individual-basedmodels;Matérn correlation; Simulation; Spatial epidemic
model.

1. INTRODUCTION

The development of new statistical methods and computational advances have made
disease modeling a widely used tool to assess risks and predict the spread of diseases, which
is useful in the design of effective strategies for their control (Keeling and Rohani 2008;
Chen et al. 2014). Still, there are many factors involved in the spread of diseases that should
be taken into account. Particularly, for the study of plant diseases, it is important to consider
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several aspects, including climatic conditions, transmission routes and human intervention
in the spread of the pathogen, as well as the spatiotemporal changes in the distribution
of susceptible host plants and the performance of methods for their detection and control
(Cunniffe et al. 2015).

Compartmental epidemiological models have been used to study the epidemiology of
diseases in humans and animals (Keeling and Rohani 2008), but also in plants (Gilligan
2002; Madden et al. 2007). These models assume that the population can be divided into
different compartments according to the state of the disease. The simplestmodel is composed
of three compartments dividing the population into three states, i.e., susceptible, infected
and recovered individuals. These models are often built around differential equations, which
describe the behavior of the disease at the population level (Kermack andMcKendrick 1927).
As reviewed by Kleczkowski et al. (2019), more complex models have been developed
including different compartments, sub-classes of each compartment, and even stochastic
approximations with discrete time-steps considering spatial heterogeneity in different ways.
Parameter estimation in these models is usually performed, in the simplest way, using
classical techniques. One of these techniques, known as least squares, consists of obtaining
those parameters that minimize the distance between the model and the data (Matis and
Hartley 1971; Chowell et al. 2009; Capaldi et al. 2012). However, there are currently other
methodologies that are becoming increasingly important such as MCMC methods within
the Bayesian framework (Gibson 1997; Gibson et al. 2004) and metaheuristic algorithms
such as the genetic algorithm (GA) and particle swarm optimization (PSO) (Akman and
Schaefer 2015; Akman et al. 2018).

A drawback of compartmental models based on differential equations is that it is not
possible to identify the individuals fluctuating between the compartments. The rate of trans-
mission is then proportional to the number of susceptible individuals, the proportion of
infectious individuals and the rate of contacts among individuals (Kermack andMcKendrick
1927; Kleczkowski et al. 2019). An alternative approach consists of using individual-based
models, which make it possible to monitor the state of each individual and the interactions
among them. Nevertheless, the number of iterations increases substantially with large pop-
ulation sizes and long time horizons, leading to high computational costs that can limit the
implementation of these models (Keeling and Rohani 2008).

Modeling spread requires also a good knowledge of the spatiotemporal behavior of
the disease. When including spatial structures in the models, it is usually assumed that
interactions among individuals, and thus potential disease transmission, decrease with dis-
tance. However, long-distance spread due to human interventions or other factors cannot
be ignored, as it plays an important role in shaping disease progress. It is also important to
consider the spatial heterogeneity of populations since host aggregation and distance from
the source of transmission can strongly influence model outcomes (Keeling and Rohani
2008).

The spatial component of plant disease spread has been approached from different meth-
ods, such as partial differential equations, distance class methods, spatial autocorrelation,
or metapopulations (Madden et al. 2007; Meentemeyer et al. 2011). The scale and the type
of spatial relationship in the models are often determined by the availability of data and the
computational cost required for their analysis. Using a fine spatial scale can have a high
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computational cost, but spatial effects cannot be detected when aggregating the data at a
larger scale. For instance, with lattice (aggregated) data modeling, the neighborhood struc-
ture is an approximation of the real dynamics, thus increasing the speed of the simulations
(Keeling and Rohani 2008). However, working at a finer scale (i.e., at the individual level
of a population with individuals represented as discrete points in time and space) allows the
spread of the disease to be described more accurately.

The spatiotemporal dynamics of an individual-based model can be described through
the probability of a susceptible individual becoming infected. This probability is quantified
as a function of the surrounding infectious population and the effect of distance between
individuals on disease transmission, which is usually incorporated by different forms of
kernels (e.g., Keeling et al. 2001; Deardon et al. 2010; Meentemeyer et al. 2011; Hyatt-
Twynam et al. 2017).

The spatial dependence can be integrated into the model by means of a correlation func-
tion. Although several functions have been proposed to handle the spatial effect, the Matérn
correlation function (Matérn 1986) is widely used in several fields due to its flexibility,
since it encompasses several functions depending on the value of its smoothing parameter
(Stein 1999; Guttorp and Gneiting 2006). Despite its advantages, to date, the Matérn corre-
lation function has not been integrated into spatial individual-based models for plant disease
spread.

The main objective of this study was to develop a spread model for plant diseases, (i)
based on individuals, thus identifying their state at any given time, (ii) considering spatial
dependence, and (iii) that was computationally efficient. For this purpose, from the available
data, an optimal value for the disease transmission rate was obtained using the classical
structure of a compartmental model, to which the spatial dependence was also included
through the Matérn correlation function. Then, a spatially explicit algorithm for the disease
spread at individual level was designed.

Almond leaf scorch disease (ALSD), caused by the bacterium Xylella fastidiosa, was
used as a case study. In particular, disease spread in almond trees in an area of Alicante
(Spain) was simulated using this individual-based model. The effects of the parameters on
disease spread were evaluated, as well as the different types and locations of initial dis-
ease introduction. A user-friendly tool to visualize the results was also developed. Spatial
individual-level prediction of disease spread provides a better understanding of the epidemi-
ology, thus allowing the application of more targeted control measures and the optimization
of resources.

2. EPIDEMIOLOGICAL MODEL

This section describes the proposed framework for modeling plant disease spread (i.e.,
spatiotemporal progression), based on the disease status of each individual and the influence
of their spatial dependence. The proposedmethodology is structured into twodistinct phases.
Firstly, we employ a compartmental model, considering all individuals at each moment in
time. This model is governed by a parameter-dependent system of differential equations,
determining the transitions of individuals among various states, which also includes spatial
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Figure 1. Compartments and dynamics of the epidemiological model. The solid arrows indicate movement of
individuals between states. The population starts as susceptible (S), after infection goes through an asymptomatic
infected (Ia) period and continues with the expression of symptoms, becoming symptomatic infected (Is). The
dashed arrows indicate the disease transmission (b) from infectious (Ia and Is) to susceptible individuals, where b
is given by the transmission rate and spatial correlation. λ is a transmission reduction parameter for Ia individuals.

dependence. Should real data be available, the parameters involved in both phases can be
estimated using either classical deterministic techniques or stochastic methods, thereby
acknowledging and accounting for the inherent uncertainty. Since this model only provides
us with information at the population level, this concept is extended to a model based
on individuals. We conclude the section by presenting an algorithm to simulate using our
proposed model.

2.1. COMPARTMENTAL MODEL

Based on the structure of the compartmental model, individuals are classified according
to their disease status as susceptible, i.e., non-infected individuals, or infected. Depending
on the disease and the organism affected, the number of compartments and the transition
between them can be highly variable. Models with more compartments may be closer to
reality but also imply greater complexity in data fitting, require greater availability of infor-
mation, and are more case-specific. Here, following a basic model with the usual states
for most plant diseases, three possible disease states were defined for individuals: suscep-
tible (S), those that are susceptible but are not infected; asymptomatic infected (Ia), those
infected and infectious but without visible symptoms; and symptomatic infected (Is), those
infected and infectious with visible symptoms. Following the scheme in Fig. 1, infection
of S individuals comes from both Ia and Is. The disease transmission rate of infectious
individuals, i.e., Ia and Is, is defined by β. Since asymptomatic individuals have a lower
pathogen concentration (European Food Safety Authority (EFSA) 2019), the transmission
rate of Ia is reduced by the parameter λ. After an asymptomatic period, the transition from
Ia to Is, i.e., the time elapsed for the symptoms expression, is given by σ . The transmission
rate and population size are assumed constant over time.

However, the spatial dependence of individuals and their spatial distribution can influ-
ence disease spread. This can be taken into account by incorporating any possible spatial
dependency between susceptible and infectious individuals, such as a correlation function
implying a distance-dependent decrease in disease transmission. In particular, we used the
Matérn correlation function (Matérn 1986), a very flexible correlation family that general-
izes many of the correlation functions widely used in spatial statistics. For two locations si
and s j , separated by a Euclidean distance di j > 0, the Matérn correlation is:
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C(di j ) = 21−ν

�(ν)
(ρdi j )

νKν(ρdi j ), (1)

where Kν is the Bessel modified function of the second kind and order ν, which is the
smoothness parameter of the function, and ρ is a scale parameter defined by the range
parameter (r ), considered as the distance at which two locations can be considered spatially
uncorrelated. The Matérn class comprises different special cases with only two parameters,
providing a wide range of forms of correlation functions, including the exponential corre-
lation function when ν = 1/2 (Handcock and Wallis 1994; Guttorp and Gneiting 2006).
The literature contains different parameterizations of the Matérn correlation function which
define the scale parameter in a variety of ways (see Handcock and Wallis 1994; Stein 1999;
Diggle et al. 2003). We used the one described by Lindgren et al. (2011), which facilitates
the parameters interpretation, where from the empirically derived definition r = √

8ν/ρ.
Through this relation, r represents the distance at which the correlation is close to 0.1 for
all ν.

The flow of individuals from one compartment to another is unidirectional and with
no recovery option. Thus, as the number of infected individuals increases, the number of
susceptible individuals decreases, with no possible return to the susceptible state. Under
these assumptions, we can define a deterministic compartmental model that describes the
disease progression bymeans of the solution of the following ordinary differential equations
(ODEs):

dS

dt
= −(λbIa + bIs)S,

dIa
dt

= (λbIa + bIs)S − σ Ia,

dIs
dt

= σ Ia. (2)

The parameter b includes the transmission rate β and the spatial dependence as:

b = β
∑

i∈�S(t)

1

|�S(t)|
∑

j∈{�Ia(t),�Is(t)}
Ci j , (3)

such that Ci j is the spatial correlation between individuals i and j , where �S(t) is the set of
susceptible individuals at time t and {�Ia(t), �Is(t)} the set of infectious individuals, asymp-
tomatic and symptomatic, at time t . Thus, b encompasses, together with the transmission
rate β, the mean for the set of susceptible individuals i of the cumulative spatial correlation
for each individual i to the infectious individuals j .

When real data are available, specifically including the number of susceptible and infected
individuals, both symptomatic and asymptomatic, at different time points, it becomes feasi-
ble to estimate the parameters of the system, λ, β, σ , and the parameters of theMatérn corre-
lation function. From a deterministic perspective, one approach to estimate these parameters
is by minimizing the distances between the solution, which relies on the parameters, and
the observed data at each time point (least square method). In this work, given the limited
availability of data and that the main objective is to simulate the disease spread from the
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origin, we focus on analyzing the impact of these parameters on the spread at individual
level, where the system of equations presented is used as a basis for obtaining a reference
value for the transmission rate.

2.2. SPATIAL INDIVIDUAL-BASED MODEL

The systemofODEs in Eq. (2) provides a simplified representation of disease progression
at the population level. In contrast, individual-based models allow a more detailed analysis
of disease spread, taking into account individual characteristics, interactions and spatial
distribution. In individual-based models, the infection of a susceptible individual depends
on the force of infection (ϕi ), which incorporates the prevalence of infected individuals,
i.e., the infected proportion of the total population, the transmission rate, and the spatial
interaction between individuals (Keeling and Rohani 2008). In line with this and with the
proposed compartmental model (Eq.2), our proposal for the force of infection parameter
ϕi , for a susceptible individual i at the time t , includes a dependence on the surrounding
infected individuals through the Matérn correlation C(di j ) for each pair of individuals i and
j at a Euclidean distance di j :

ϕi (t) = λβ
∑

j∈{�Ia(t)}
C(di j ) + β

∑

k∈{�Is(t)}
C(dik), (4)

where j and k represent each of the Ia and Is individuals, respectively, of the infected
population at time t (i.e., �Ia(t) and �Is(t)); β > 0 is the transmission rate of infection; and
0 ≤ λ ≤ 1 represents a decrease in the transmission rate of Ia with respect to Is.

Given this force of infection, the probability of a susceptible individual becoming infected
at time t is Pi (t) = 1 − exp(−ϕi (t)) (Keeling and Rohani 2008; Deardon et al. 2010).

2.3. SIMULATION ALGORITHM

An algorithm to simulate disease spread based on the previous model was implemented
using thePython programming language (Python Software Foundation 2021). The Numba
library (Lam et al. 2015) was also used due to its computational efficiency with high-
dimensional data and its ability to run processes in parallel threads.

As shown in the diagram of the algorithm in Fig. 2, the landscape, i.e., the georeferenced
locations of the individuals, must first be defined. The onset of the outbreak is initiated with
an initial disease introduction Ia at t = 0. At each time t , S individuals are evaluated. For
each Si , ϕi is calculated based on the surrounding infected individuals at a distance less
than dmax = 1.5r , taking into account whether they are Ia or Is following Eq. (4). This
maximum distance to compute the spatial correlation allows the algorithm to be optimized,
considering that at a distance greater than r the correlation between two locations is almost
zero while capturing the tail of the correlation function. The infection of individual Si is
assessed by the discretization of the probability of infection Pi , through a random variable
Xi from a Bernoulli distribution Be(Pi ), i.e., if Xi = 1 individual i becomes infected Ia,
and if Xi = 0 individual i does not become infected.



An Individual-Based Spatial Epidemiological Model

Figure 2. Diagram of the simulation algorithm. S and I indicate the susceptible and infected states, respectively,
where I differentiates asymptomatic (Ia) and symptomatic (Is). NS , NI and NIa are the total number of individuals
in each corresponding state. d is the Euclidean distance and dmax is the maximum distance to evaluate neighbors.
ϕ represents the force of infection, β is the transmission rate of infection, reduced by the λ parameter for Ia.
C is the spatial correlation, P is the probability of infection, and Be(P) denotes a random value of Bernoulli
distribution with probability P . t represents the time and tmax the maximum time set for the simulation. The
symptom expression SE counter starts when a susceptible individual becomes infected (Ia), so that when the
given time for symptom expression (σ ) is reached, Ia becomes Is. The dashed line squares contain the loops for
performed by the algorithm.
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Likewise, for each t the Ia individuals are evaluated. For this purpose, a counter is
initialized at t = 1 for the symptom expression of the individuals in this state. When the
given value for the parameter σ is reached, individual i becomes Is. Finally, the result of
the state of all individuals for each t is obtained.

3. CASE STUDY

This section describes the rationale and the case study selected for the application of
the individual-based spread model. We performed several simulations with the algorithm to
assess disease spread. Simulations were performed in the study area to compare the disease
spread in space and time under different scenarios and to evaluate the efficiency of the
algorithm with a large number of individuals. To interactively visualize the results of all
scenarios, a Shiny application (Chang et al. 2021) was developed using R software (R
Core Team 2020). It is available at https://spatial-ibm.shinyapps.io/spread_results_app/.

3.1. RATIONALE

Almond leaf scorch disease (ALSD) is caused by the plant pathogenic bacterium Xylella
fastidiosa (Wells et al. 1987). This pathogen inhabits the vascular tissues of the xylem, caus-
ing leaf scorch, wilt, dieback, and plant death. The bacterium is disseminated through insect
vectors as well as propagating plant material (Almeida et al. 2005). Before its first detec-
tion in Europe in 2013, the pathogen was only known to be present in America (Saponari
et al. 2013). After this first report in Italy, several outbreaks have been detected in Europe,
potentially infecting more than 500 plant species (European Food Safety Authority (EFSA)
2020). In Alicante (Spain), X. fastidiosa was reported for the first time in 2017 affecting
almond (Prunus dulcis) trees. A demarcated area was delimited based on the EU legisla-
tion (European Commision 2022), where intensive surveys and disease control measures
are implemented by the Plant Health Authority in accordance with the Commission Imple-
menting Regulation (EU) 2020/1201. As 90.3% of the positive samples for the presence
of the bacterium were found in almond trees (Generalitat Valenciana (GVA) 2021), it is
considered the main host of X. fastidiosa in this area and therefore is used as the susceptible
population in our case study.

3.2. STUDY AREA, POPULATION AND PARAMETERS

The study area covered the X. fastidiosa infested area in Alicante. To simulate the spread
of ALSD at the individual level, the Agricultural Plot Geographic Information System
(SIGPAC) database and the grid used in the official surveillance program were merged to
generate the georeferenced distribution of almond trees. FromSIGPAC,we selected the plots
identified as ‘nut trees’ and ‘nut treeswith other associated crops’ (Ministerio deAgricultura,
Pesca yAlimentación (MAPA) 2021). The study areawas defined to the boundary of the grid
cells with samples from the official surveillance program. As the locations of the trees were
not available in the databases, the georeferenced distribution of almond trees was generated

https://spatial-ibm.shinyapps.io/spread_results_app/
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Figure 3. a Georeferenced distribution of almond trees (green) generated in the affected area of Alicante. The
grid of cells aggregated to 1km2 is represented, where the cell marked in red has been zoomed in b with the
corresponding grid of 1 ha cells used in the simulations, and the almond trees corresponding to these cells (green)
(Color figure online).

with a 7 × 7m tree row spacing, which is frequent in the traditional system of almond tree
planting (Segura et al. 2018) in the selected SIGPAC plots. Our study area thus consisted of
282,041 almond trees (Fig. 3).

The effect of the model parameters (β, r and ν) on disease progression was compared
by simulation. 100 Ia infected individuals were initially introduced and a 360-month time
period was simulated. The disease spread was also evaluated according to the type of initial
introduction. Specifically, three types of initial introduction were evaluated, referred to
hereafter as random, at 5 foci and at one focus. In the case of random introduction, the
initial 100 Ia individuals were randomly assigned, generating a more or less geographically
dispersed distribution of infected individuals over the study area. For the initial introduction
at one focus, an individual was randomly selected in the study area, defining the center of a
circumferencewith a radius of 1 kmwhere the remaining the individualswere then randomly
selected. The same process was used for the introduction at 5 foci, initially selecting 5
individuals randomly from the population, and assigning the remaining in a radius of 1-
km around them so that each focus consisted of 20 individuals Ia. In this way, each initial
introduction type startedwith the samenumber of Ia with the different configurations relative
to geographic location. In all cases, random selection was performed by non-replacement
sampling where all individuals had the same probability of being selected.

Due to the relatively slow progression of the disease (Moralejo et al. 2020), simula-
tions were performed at monthly time-steps to improve computational efficiency. Although
molecular analyses indicate that the first outbreak of the disease in Alicante was decades ago
(Landa et al. 2020; Moralejo et al. 2020), it was not detected until 2017. Therefore, data for
estimating parameters describing the disease from its origin are scarce. Official surveillance
data for X. fastidiosa from 2018 to 2021 were used to compare the prevalence observed with
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Table 1. Average of the spatial correlationsC obtained for the set of susceptible individualswith each of the values
of the range parameter r of the Matérn correlation function, and the corresponding optimal transmission
rate β values obtained by the sum of the squared error of the surveillance data and values predicted
values by the compartmental model

r (m) C β (month−1)

250 2.12 0.014
500 3.15 0.01
750 4.19 0.007
1000 5.39 0.006

the results of the fitted compartmental model in Eq. (2) and obtain a reference value for β.
The compartmental model was fitted for 30 years with an initial outbreak of 100 individuals
Ia of the approximate almond tree population in the study area (282,041 almond trees). Since
there was unavailable information on the asymptomatic period, the parameters related to
a reduction in the transmission rate of Ia (λ) and the rate of transition from asymptomatic
to symptomatic (σ = 1/asymptomatic period) were set according to information gathered
from the literature as λ = 0.015 (White et al. 2020) and σ = 1/(8months) (European Food
Safety Authority (EFSA) 2019). The spatial dependence introduced in the compartmental
model was obtained from the spatial correlation through theMatérn function (Eq. 1, between
each susceptible individual, i.e., negative sampling result, i.e., and each infected individual,
i.e., with positive sampling result. The correlation average C of the set of individuals S
was used from the accumulated correlations for each individual S following Eq. (3). The
model was run with 100 values of β between 0.001 and 0.1 with C obtained given four
values for the range parameter r of the Matérn correlation function: 250, 500, 750 and
1000m (Table 1). The value of β that minimized the sum of the squared error of the infected
individuals (I ) predicted by the model and the observations was considered optimal. The
sum of the squared error was given as

∑n
i=1 (I (ti , β) − I (ti ))2, where n is the total time t

evaluated. For this purpose, the proportion of infected individuals predicted by the model
for the last 4 years, i.e., n = 4, and the proportion of infected individuals accumulated from
the samples in relation to the total number of samples for each year were used. As a result,
the optimal value obtained for β was between 0.006 and 0.014month−1, with r = 1000m
and r = 250m, respectively (Table 1). However, it must be taken into account that this
optimization was only based on the data available for the last few years.

3.3. RESULTS OF DISEASE SPREAD SIMULATIONS

In the following,we present the results obtainedwhen simulatingwith different parameter
values and different initial introductions in order to evaluate: (i) the effect of the different
parameters on the disease spread, (ii) the variability depending on the initial introduction,
and (iii) the intrinsic variability of the model. Because of the large number of simulations
and computational cost due to the large number of individuals, infection probabilities were
calculated using a grid of 1ha cells (Fig. 3). At each time-step, one individual S per cell
was randomly selected and the probability of infection of this individual was assigned to
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the other individuals S in the same cell. To test whether this approach produced biases
in the results, we compared the results obtained with the simulation of disease spread by
calculating the probability of infection of each individual S at each time t .

3.3.1. Effects of Parameters

Disease spread was simulated with the combination of different values for the parameters
β, r and ν, with initial introduction of the infected individuals random, at 5 foci or at one
focus. For each of these types of introduction, the location of the initial infected individuals
was fixed at the same location. The disease spread simulations were performed with β

values of 0.005, 0.015 and 0.03month−1, thus covering the range of optimal values of
the transmission rate obtained from the surveillance data of X. fastidiosa in the study area
with the compartmental model. Different values of the parameters of the Matérn r and ν

correlation function also were tested. The values of r used, as for the β optimization, were
250, 500, 750 and 1000m, representing a reasonable range of values for the spread distance
by insect vectors. The smoothness parameter ν was set to 0.5, 1 and 1.5. The transmission
rate reduction for Ia was set as λ = 0.015 and the time to symptom expression at 8months
for all simulations (European Food Safety Authority (EFSA) 2019).

The resultswere similar for the three values of ν, regardless of the other parameters (β and
r ) or the type of initial introduction (Fig. 4). The slight variationswhen the initial introduction
was aggregated at 5 foci or at one focus can be attributed to the intrinsic variability of the
simulations. Therefore, due to the lack of variation concerning this parameter, ν = 1 was
fixed in subsequent simulations.

With the same r and the same type of introduction, few differences were found when
varying β. With the lowest β, the percentage of S decreased moderately slower. Despite
this, after 360months, the results were almost the same. The only notable difference after
this time period was obtained with the introduction at one focus and r = 750m, where the
percentage of S was 36.24% higher with the lowest β compared to that obtained with the
highest β, while in all other combinations this difference in the percentage of S did not
exceed 7%.

Simulations with a large r value resulted in a higher infection rate. Nevertheless, the
spread of the disease was different depending on the type of initial introduction. When the
initial introduction was aggregated at one focus, with low values of r the decrease in the
percentage of S individuals stabilizes in a relatively short period of time. However, with
r = 1000m it continues to decrease at different rates over time. This behavior was also
observed when the initial introduction was aggregated at 5 foci. With the two lowest values
of r , however, the number of susceptible individuals continues to decrease slowly without
stabilizing, and with r = 1000m the fluctuations in the infection rate were less pronounced.
These variationswere not observedwith the random initial introduction,where the number of
infected individuals almost stabilized at 96months at about 2 and 0.6% of S with r = 750m
and r = 1000m, respectively, while with the lowest values of r the disease continued to
spread slowly.

Large differences were found depending on the type of initial disease introduction and on
the value of r . While in the case of random introduction the percentage of S fell rapidly in
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Figure 4. Percentage of susceptible individuals over time for the simulations with different values of the trans-
mission rate (β), the parameters of the Matérn correlation function, range (r ) and smootheness (ν) and the type of
initial introduction (random, 5 foci and one focus).

the first fewmonths, the decline was more gradual when introduction was aggregated, being
slower the higher the aggregation, i.e., when the introduction was at one focus. Disease
spread was limited in all cases by the value of r , so that at the highest value of r , regardless
of β or introduction, after 360 months only 0.6% of S remained. At r = 750m, disease
spread was rapid with random introduction and stabilized after a few months at 2% of
S, whereas with both aggregated introductions the decline continued without appearing to
stabilize during this period. At the two lowest values of r (250 and 500m), the percentage
of S practically stabilized in all cases. The higher r and the less aggregated the introduction,
the faster this stabilization point was reached and the lower the percentage of remaining S,
i.e., the disease affected a greater number of individuals.

3.3.2. Variability Due to Initial Introduction

To study the variability due to the type and geographical location of the initial introduc-
tion, 10 simulations were performed for each type of introduction, random and aggregated
at 5 foci and at one focus, with each combination of β and r parameter values. In each
simulation, the location of the initially infected individuals was different, but in accordance
with the type of introduction, choosing the introduction of the Ia as described above.

The dynamics of disease spread were similar to those observed previously in all cases
(Fig. 5). However, while the variability between different introduction configurations was
very low for random introduction, large differences were observed for aggregated introduc-
tion, depending on the location of the initial foci of infected individuals. The difference
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Figure 5. Minimum, maximum, interquartile range and median of the percentage of susceptible individuals over
time of the 10 different geographical locations for each type of initial introduction (random, 5 foci and one focus),
with different values of the transmission rate (β) and range (r ).

between the maximum and minimum percentage of S at 360months was ranged from 0.22
to 5.4 with random introduction; this difference decreases as r increased, while different
values of β produced similar results. With the two types of aggregate introduction and the
lower values of r , the variability gradually increased in the first months and then almost
stabilized, with the median being closer to the minimum. In the simulations with one initial
focus located in an area at a greater distance than r of the rest of the individuals, the spread
of the disease was practically null. The greatest variability was observed when the introduc-
tion was at one focus, with the largest difference with r = 750m and β = 0.015 month−1,
where the percentage of S was 60% when the initial focus occurred toward the eastern end
and 8% when the introduction was in the central area, leading to a greater disease spread
(Fig. 6a, b). However, with the same r and β, this large difference was observed in earlier
months, but after 360 months the difference decreased to 14.4%. The initial introduction at
5 foci had the highest variability in the final percentage of S with r = 500. Specifically,
with β = 0.03 month−1, the final percentage of S ranged from 79 to 38% (Fig. 6c, d). In
these cases, the random introduction of the 5 foci resulted in two of them being very close
together, even so, as shown in Fig. 6, the location of the foci and the distance between the
individuals themselves was a determining factor in the progress of the disease. For both
types of aggregate introduction and the higher value of r and β 0.015 or 0.03month−1,
although differences were observed at the different times, the difference in the percentage
of S at the end was zero.
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Figure 6. Simulations with which the greatest difference was obtained depending on the geographic location of
initial introduction. a, b Minimum and maximum number of infected individuals after 360months, respectively,
with initial introduction at one focus, transmission rate β = 0.015 month−1 and range r = 750m. c, d Minimum
and maximum infected individuals after 360months, respectively, with initial introduction at 5 foci, transmission
rate β = 0.03 month−1 and range r = 500m.

3.3.3. Variability due to Intrinsic Stochasticity

The intrinsic variability of the stochastic model was observed by running 10 times each
combination of β, r , and the three types of initial introduction. For each type of introduction,
the same configuration of the location of the initially infected individuals was fixed. Disease
dynamics showed the same behavior as described above, with very little variability observed
in the different simulations for each combination (Fig. 7). The only notable differences were
those obtained in the last few months with the introduction at 5 foci, r = 500m, and
β = 0.03 month−1, where the difference between the maximum and minimum percentage
of S after 360months was 19.3%. Despite this, the difference between the maximum and
minimum of the final S percentage was between 0 and 5%with the introduction at 5 foci for
the rest of the combinations.With random introduction, the difference between themaximum
and minimum percentage of S at 360months ranged from 0 to 1.2%, converging with the
highest r values. With the introduction at one focus, the difference ranged from 0 to 9.6%,
with the largest difference corresponding to the simulations performed with r = 750m and
β = 0.005 month−1.
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Figure 7. a Minimum, maximum, interquartile range and median of the percentage of susceptible individuals
over time of the 10 simulations with each combination of the different values of the transmission rate (β), the range
(r ) of the Matérn correlation function, and the type of initial introduction (random, 5 foci or one focus). b The
dashed line corresponds to the simulations in which the probability of infection was calculated for each susceptible
individual with β = 0.03 month−1 and r = 1000m, for each type of initial introduction (random, 5 foci and one
focus), overlapping with the intervals of the 10 simulations obtained with the same values of the parameters β and
r , where the probability of infection was calculated for each 1 ha cell.

In order to test whether calculating the probability of infection per 1 ha cell produced
a bias in the results, the simulation of disease spread was performed by calculating the
probability of infection for each individual S with β = 0.03 month−1, r = 1000m and
each of the three types of introduction. The results obtained with these simulations did
not differ from the approximation, with the percentage of S individuals within the interval
obtained with the previous simulations (Fig. 7).

Depending on the values of the parameters r and β and the type of introduction, for
simulations where the probability of infection was calculated as a function of the 1-ha cell
grid, the computation time varied between 53 and 609s, with the slower the disease progres-
sion, the longer the computation time. However, for the simulations where the probability
of infection was calculated for each individual, the computational time varied between 12
and 36min.

4. DISCUSSION

Epidemiological models are useful tools for the study of diseases, since they assist in the
design and implementation of control strategies to avoid or minimize disease spread. Many
factors can influence disease progress, including the environment, human interventions, and
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means of spread, among others. Both the complexity of taking all these factors into account
and the lack of suitable datamake thesemodels an approximation of reality. Therefore,model
complexity and the factors to be taken into account are often determined by the specific
objectives to be achieved. Compartmental models with differential equations are widely
used in the study of disease epidemics, allowing an overall description of the progression
of the disease at the population level. However, these models do not allow identification of
relevant factors in the potential spread of the disease, such as disease status at the individual
level and spatial heterogeneity.

The main objective of this work was to develop a tool for the study of disease spread at
the individual plant level with heterogeneous spatial distribution. This model can be used as
a basis for different applications including epidemiological surveillance, risk assessment,
disease control, and impact studies. One of the main issues when dealing with models at
the individual level is the high computational cost due to the large number of iterations.
In this study, the algorithm was applied to a simplified and generalizable model based on
three compartments (S, Ia and Is) and their respective interactions, also integrating the
spatial dependence. This model allowed us to simulate the spread of the disease under
different conditions with feasible computational times. The spatial correlation was included
by means of the Matérn correlation function, due to its flexibility and the interpretability of
its parameters, which is widely used in diverse scientific disciplines (Guttorp and Gneiting
2006). Despite this, so far it has not been integrated in individual-based models in plant
disease epidemiology.

When data are available that collect the number of individuals in each of the disease
states at different times, it is feasible to estimate the parameters associated with the system.
As detailed above, it can be approached from a deterministic perspective, however, opting
for a stochastic or random scenario is more advisable due to the presence of measurement
errors in the data and the influence of external factors that can impact the system. Two
main classes of differential equations with uncertainty exist, stochastic differential equa-
tions (SDEs) and random differential equations (RDEs). In the case of SDEs, differential
equations are influenced by an irregular stochastic process. A classic example of an SDE is
a differential equation perturbed by a term dependent on a white noise variable, calculated
as the derivative of the Wiener process or Brownian motion (Oksendal 2007; Gard 1988).
To solve an SDE, the so-called Itô calculus can be employed, based on the application of
the Itô lemma (Gard 1988). On the other hand, an RDE represents a natural generalization
of the deterministic counterpart (Soong 1973; Strand 1970). In RDEs, the input param-
eters are considered random variables rather than fixed constants, respectively. Random
differential equations constitute a natural generalization of their deterministic counterpart.
Random effects are directly manifested in parameters, which are considered random vari-
ables or stochastic processes, i.e., parameters are assumed to have regular sample behavior
described by standard probabilistic distributions. By incorporating a stochastic approach
and considering the inherent uncertainty, both SDEs and RDEs offer valuable insights and
flexibility when dealing with real-world models.

In our case, given the limited availability of data, we employed a compartmental model,
which includes the spatial dependence between individuals using the Matérn function, to
obtain a reference value for the transmission rate parameter. Subsequently, based on this and
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information provided by the literature, an individual-based model is used for disease spread,
where we compare how the parameters affect the solution of this spatiotemporal model. If
data were available, and as previously indicated, we could have introduced uncertainty in
the system of differential equations, considering the parameters as random variables. On the
other hand, even if data from the origin of the introduction are not available, the simulation
model used can provide a retrospective view.

The effects of the model parameters in disease spread were compared individually by
simulating all possible combinations of the selected values. Due to the lack of suitable
temporal data for inference on the β parameter, it was approximated to a reasonable value
based on official surveillance data for X. fastidiosa in the study area. Due to the limitations
of obtaining this parameter, other values around this parameter were also compared by the
simulations. It was found that the r parameter of the Matérn correlation function as well as
the type and location of the initial introduction were highly influential in the spread of the
disease. For the highest values of r , almost the entire population was infected, regardless
of β or the type of initial introduction. At lower r values, at certain times the spread of
the disease was stopped, even though not all individuals were infected. The time of this
interruption depended on the type of initial disease introduction and the value of r . The
number of infected individuals increased with r , but the type of initial introduction also had
a strong influence on the spread of the disease. When the initial introduction was random,
with r = 250m the incidence was even higher than when it was aggregated at a focus
with r = 500m. These values of the range parameter can be associated with the distance
of natural spread of the disease, i.e., by insect vectors, so it would be realistic to consider
that if the insects have greater flight distance capacity they can infect more distant trees.
Therefore, information on these could be used for the estimation of this parameter of the
Matérn correlation function.

The variability of disease spread as a function of the type of initial introduction showed
the importance of the location of this first introduction, particularly if it was aggregated.
When the infection was initiated at an isolated location, the surrounding area without trees
acted as a barrier to spread when r was less than the extent of this area where host plants
are not present. On the contrary, in areas with higher population density, i.e., without large
empty spaces, the infection rate was almost constant and depended on r . While a random
introduction such as the one employed is unlikely to occur, aggregate introductions through
the introduction of propagative material may more closely approximate reality.

Due to its simplicity, this individual-based model can be applied to the study of the
spread of plant diseases caused by other pathogens by adapting the parameter values. Fur-
thermore, with this basic proposal, the model could be extended with different disease states
or dynamics adapted to each case study, such as the recovery or death of individuals, entry
of new individuals into the population, elements of disease control, among others. However,
it should be noted that more complexity in the model may imply a higher computational
cost, as well as a larger number of parameters to estimate if data are available. Moreover,
the complexity of the model would imply that it would be more case-specific and therefore
less flexible.

In human disease epidemiology, the contact matrix is widely used to include the spatial
relationship between individuals (Mahmood et al. 2021; Amaral et al. 2023). However, in
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plant disease epidemiology, different spatial interactions have been associated with plant
disease spread, depending on the host distribution, environmental conditions and the biology
of the pathogen (Madden et al. 2007). The Matérn correlation function in this model allows
the easy integration of diverse spatial relationships between individuals, thus making it
capable of handling a variety of plant disease epidemics. This spread model can be used to
establish areas at risk of disease, improve epidemiological surveillance, and optimize control
strategies. Identifying the disease status of each individual allows the model to operate at
a fine scale. With this, more realistic disease spread simulations are obtained and so the
efficiency of control strategies can be better assessed.
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