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Abstract: The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis
in laboratories. However, spectroscopy is a sensing technique that could replace these destructive
analyses for monitoring nutritional status. This work aimed to develop a calibration model to
predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-
destructive spectral measurements. To this end, 592 ‘Clementina de Nules’ citrus leaves were collected
during several months of growth. In these foliar samples, the spectral absorbance (430–1040 nm)
was measured using a portable spectrometer, and the foliar ionomics was determined by emission
spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N.
Models based on partial least squares regression (PLS-R) were calibrated to predict the content
of macro and micronutrients in the leaves. The determination coefficients obtained in the model
test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and
0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the
weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that
the selected wavelengths were all in the visible region (430–750 nm) related to foliage pigments.
The results indicate that this technique is promising for rapid and non-destructive foliar macro and
micronutrient prediction.

Keywords: citrus nutrition; agricultural sensors; fertilisation; ionomics; chemometrics

1. Introduction

Citrus is one of the most popular and widespread fruit crops worldwide. According
to FAO, the world production of citrus fruits was estimated at 152 million tons in 2020.
Oranges are the most widely produced citrus fruit worldwide (50.5% of the total), followed
by mandarins (33.7%), lemons (8.4%), and grapefruit (7.4%) [1]. The leading citrus producer
is China (32.7 million tons), followed by Brazil (16.6 million tons), India (9.8 million
tons), and the United States (7.8 million tons). Spain, with a cultivated surface area of
300,504 ha, reaches a production of 6.8 million tons and is the first producer country in the
EU, followed by Italy [2]. Moreover, Spain is the foremost global provider of fresh citrus
fruits, commanding approximately 25% of the export market worldwide [3].

This high level of production requires optimal handling of resources. Among the
primary agricultural inputs are those related to fertilisation management, such as nutrients.
Nutrients are essential elements for the growth and productivity of crops and can be
categorised as macronutrients and micronutrients based on the relative amounts required
by plants [4]. Reducing unnecessary fertiliser use helps to reduce costs, improve fruit
quality and minimise the risk of contamination. Excess or nutritional deficiency can affect
vegetative development and crop yield. Sixteen elements are considered essential nutrients
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for the optimum development of crops. These nutrients include carbon (C), oxygen (O),
hydrogen (H), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg),
sulphur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), boron (B), molybdenum
(Mo), chlorine (Cl), and nickel (Ni). Plants absorb C and O from the air through the leaves
as carbon dioxide (CO2). The photosynthesis process transforms CO2 and water into H, C,
and O. The other nutrients are absorbed through the root system or foliar surface and must
be supplied during the growth cycle following fertilisation plans [5].

Macronutrients are essential elements for plants and are required in relatively large
amounts. Nitrogen is a major factor in photosynthesis since chlorophyll molecules contain
this nutrient [6,7], and it is the nutrient that affects, to a greater extent, the vegetative
development of the plant. Phosphorus intervenes in the transport, storage and transfer of
energy, stimulating root development and favouring the flowering and fruit set. Potassium
is the element that influences production the most since the fruit is the main sink of
this nutrient. Calcium plays a crucial role in activating and regulating various cellular
processes, including cell division and elongation. It also influences the organisation of
cells, particularly concerning the specialisation of cell organelles and the translocation
of carbohydrates. Magnesium is part of the chlorophyll molecule (photosynthesis), a
constituent of cell walls, and plays a vital role in P translocation and N assimilation.

Regarding micronutrients, S is the key to protein synthesis, a component of sulphur-
containing AA (cysteine and methionine) and is part of vitamins and coenzymes. Iron
deficiency is common in calcareous soils. It is an essential element for the growth and devel-
opment of plants since it participates in numerous enzymatic and metabolic processes and
in the synthesis of chlorophyll. Zinc is part of the chlorophyll molecule (photosynthesis),
and Mn is bound to Fe for chlorophyll formation (photosynthesis). Cooper is involved in
photosynthesis and carbohydrate metabolism. Boron is necessary for lignin biosynthesis,
involving cell division and root elongation [8]. Molybdenum is a key component in two
enzymes that convert nitrate to nitrite and ammonia. Its absence prevents the correct
transformation of N into amino acids. Chloride is essential for plant growth but is ab-
sorbed by plants in minimal quantities. And finally, Ni is necessary for N metabolism and
plant germination.

Therefore, nutritional diagnosis is essential for efficient fertilisation management,
especially at the early stages of crop development when it influences the production quality.
Traditionally, the nutritional status of plants is determined via a leaf ionomic analysis
carried out in a laboratory to know the concentration of nutrients [9]. The results of
these laboratory analyses are compared with the published reference levels at different
phenological stages to make sustainable and efficient recommendations on fertilisation.
However, leaf ionomic analyses are complex, expensive, and time-consuming and involve
high reagent costs and negative environmental impact.

Optical sensors are emerging as a faster and more economical alternative to nutritional
diagnosis. These sensors can measure the electromagnetic energy reflected, absorbed or
transmitted by vegetation (spectral signature) at different wavelengths. Biotic or abiotic
stresses, diseases or nutritional deficiencies affect this energy and the spectral signature. It
can therefore be related to crop nutritional status [10,11]. Visible and near-infrared (Vis-NIR)
spectroscopy is the most commonly used technology to obtain these measurements [12]. In
this context, Vis-NIR spectroscopy has shown potential as a fast, non-destructive method for
analysing several plant features [13–16]. The principle is based on biochemical changes that
result in photosynthetic activity, cell structure, and stability of chemical bond variations,
promoting changes in reflectance [14].

Several studies have confirmed the potential of spectroscopy to obtain the concen-
tration of nutrients in different crops. Menessatti et al. [17] predicted K and N in citrus
leaves with high accuracy using Vis-NIR spectroscopy and leaves from trees with different
N treatments. Galvez-Sola et al. [18] determined N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn
concentrations in different species of citrus leaves using Fourier Transform NIR (FT-NIR)
spectroscopy. In other fruit trees, Phanomsophon et al. [19] calibrated models based on
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partial least squares (PLS) to predict N and K concentration levels in durian leaves with
higher accuracy. In vine leaves, Cuq et al. [20] studied the nutritional status of P, K, Ca, Mg,
Mn, Fe, Cu, Zn, and B contents in different vine organs (leaf blades, petioles and berries)
using PLS models. The best prediction model was shown for Ca and Mg with R2 = 0.88,
0.70, 0.72 and 0.60, 0.72, and 0.80 for limbs, petioles, and berries, respectively. In wheat
and oats, N and Mg deficiencies were found to cause a great increase in reflectance in
both Vis and NIR spectral ranges, and deficiencies of P and K resulted in a decrease in the
412 to 770 nm range [21]. Additionally, Johnson et al. [22] found that the combination of
NIR and mid-infrared (MIR) ranges showed good potential for the determination of both
macronutrient (N, P, K, Ca, Mg, and S) and micronutrient (Na, Fe, Mn, B, Cu, Mo, and
Zn) concentrations in rice plants (straw and paddy) using PLS. Yarce et al. [23] found high
correlations using the NIR region to predict macro and micronutrients (Ca, Mg, N, P, K, Cu,
Zn, Mn, and Fe) in sugarcane, and Chen et al. [24] used the same spectral region to predict
P. More recent work has been carried out to study the nutrient concentration in persimmon
leaves, achieving better results using spectroscopy [25] than hyperspectral imaging [26].

The European Union (EU) is committed to promoting sustainable agriculture and
reducing the use of fertilisers by 50% by 2030 as part of its European Green Deal and
Farm to Fork strategy. To achieve this goal, developing tools and robust predictive models
for nutrient assessment is essential to develop rational fertilisation plans further. Each
plant species and variety have its own nutritional needs. Therefore, it is essential to
understand the specific nutritional requirements of the variety to ensure optimal plant
health and productivity. Few studies conducted to determine nutrients in citrus leaves
using Vis-NIR spectroscopy have been found. This work advances the development of
a non-destructive tool for the prediction of the foliar concentrations of macro (N, P, K,
Ca, Mg) and micronutrients (Na, S, Fe, Cu, Mn, Zn, B) in citrus leaves based on Vis-NIR
spectroscopy, using a portable field spectrometer. This tool would boost the establishment
of rational fertilisation programmes.

2. Materials and Methods
2.1. Samples

The study was carried out on eight-year-old trees commercial plot of clementine
mandarins (Citrus clementina Hort. Ex Tan.) grafted on two rootstocks, Citrus macrophylla
and Citrange carrizo. The plot was located in Almenara (Castellón), Spain (39◦44′59.75′′ N
and 0◦13′39.76′′ W), on a loam-clay soil with good drainage and a depth greater than
1.5 m with a total area of 72.2 ha. Table 1 shows the amount of nutrients applied in the
experimental plot. These doses are recommended for citrus cultivation in Mediterranean
growing conditions [8].

Table 1. Fertiliser units (kg/ha) applied to the experimental plot.

Annual Dose Chemical Compound (kg/ha)

N 240
P2O5 80
K2O 140
MgO 180

Fe 1

Leaf samplings were carried out in June, July, September, October, November 2020
and January 2021 to enhance the variability of foliar nutrient concentrations. Each month,
12 samples of eight spring flush leaves from the non-fruiting shoots were randomly collected
and separately bagged. The eight leaves in the same bag were later used for every single
ionomic analysis. A total of 592 leaves were collected because the last sampling included
16 more leaves. The samples were transported to the laboratory, washed with deionised
water and placed on a paper towel to dry the moisture.
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2.2. Spectral Acquisition

The CI-710 Miniature Leaf Spectrometer (CID Bio-Science, Inc., Camas, WA, USA)
was used to record the spectra of the leaves. This fully portable spectrometer can measure
Vis-NIR transmittance, absorbance or reflectance spectrum between 345 and 1050 nm. The
radiation source emitted consists of a combination of a blue LED and an incandescent lamp,
and a clip system protects the measurement area from interference from the environmental
light. Measurements were taken in 232 bands in the spectral range 430–1040 nm at intervals
of 2.6 nm. The spectral measurements were performed in absorbance mode at two points
of each leaf, one near the apex and the other near the petiole. The average spectrum of
these two points was obtained. Figure 1 shows the acquisition of the spectrum of the
citrus leaf at a point on the leaf, specifically at the apex, in absorbance mode, with the
CI-710 spectrometer.
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2.3. Foliar Ionomic Analysis

After the spectral measurements, the leaves were dried in a forced air oven at 65 ◦C
for a minimum of 72 h and ground to 1 mm with a water-cooled mill (IKA M 20, IKA
Labortechnik, Staufen, Germany).

Ionomic analyses were then performed using eight leaves for every single analysis.
The Kjeldahl method [27] was used for organic N analysis using a Tecator Kjeltec 8200 TM
Digestor (FOSS, Hillerød, Denmark). The other macro and microelements were determined
by an inductively coupled plasma optical emission spectrometry iCAP 7000 Plus Series
ICP-OES (Thermo Scientific, Waltham, MA USA). Nutrient extraction was performed by
wet digestion using a microwave (Milestone ETHOS UP, Sorisole, BG. Italy). For this,
0.200 g of the crushed dry samples were weighed, and 4 mL of Milli-Q, 4 mL of nitric
acid (HNO3) and 2 mL of hydrogen peroxide (H2O2) were added to each sample. The
tubes were kept at 200 ◦C for 15 to 20 min. Once digestion had finished, the extracts were
diluted in 25 mL tubes and micronutrient concentrations were analysed in the ICP. The
concentration was calculated through Equation (1).

Micronutrient concentration = ((a − b) × V)/P (1)

where a was the concentration of Fe, Zn, Mn, Cu, and B in the solution of the digestion of the
foliar sample (mg·L−1); b was the concentration of these nutrients in the blank (mg·L−1); V
was the final volume of digestion (25 mL); and P was the dry weight of the sample digested.
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An aliquot of 0.5 mL was taken from the extraction solution to determine the macronu-
trients and made up to 10 mL with Milli-Q water. The concentration was calculated using
Equation (2).

Macronutrient concentration = ((a − b) × V × d))/(P × 1000) (2)

where a was the concentration of P, K, Mg, Ca, and S in the aliquot from the digestion of
the sample (mg L−1); b was the concentration of these nutrients in the blank (mg L−1); V
was the final volume of digestion (25 mL); P was the dry weight of the sample digested;
and d was the dilution factor.

Mo, Cl, and Ni were not included in the analysis since these nutrients were recently
considered essential elements in plants [28], and, hence, the focus was placed on the
nutrients with reference values for nutritional diagnosis that had already been established.

2.4. Chemometric Analysis

The two spectra obtained from each sample were averaged to obtain a single value
per leaf and correlated with the nutrient concentrations determined by ionomic analysis.

Five pre-treatments were applied to the spectra. Mean centre (MC) was used to
centre each variable by subtracting the mean of all the elements of that variable [29].
Savitzky-Golay (SG) smoothing [30] was applied to reduce random noise and increase
the signal-to-noise ratio. A reduction in dispersion was performed through Standard
Normal Variate (SNV) [31], while the first (1D) and the second derivatives (2D) were used
to eliminate constant baseline offsets and offsets that vary linearly with wavelength [32].
Models combining MC with the other techniques were trained and tested.

PLS-regression (PLS-R) is a common technique to establish a correlation between
sample spectra and the properties of interest, such as nutrient concentration [33]. In this
work, PLS-R models were trained to predict the nutrient content in citrus leaves [34]. A
separate model was developed for each nutrient through the creation of a table with the leaf
samples as rows and pre-treated spectra (X-variables) as columns. An additional column
was added to each table to include the actual nutrient concentration values obtained from
ionomic analyses, which served as the variable to be predicted (Y-variable).

Samples were randomly divided into a training set (75%) for calibration and an inde-
pendent test set (25%) for external validation. We checked that there were no statistical
differences in the nutrient concentrations of both tests. The training set was used for cali-
bration and cross-validation (CV), while the test set was for external validation. Parameter
optimisation is essential to improve the efficiency and accuracy in the development of mod-
els [35,36]. CV was employed to determine the optimal number of PLS-R latent variables
(LV) and estimate the model uncertainty in the training set [37]. The model with the lowest
root-mean-square error (RMSE) and the highest coefficient of determination (R2) in the test
of the model was selected, along with the LV used to calibrate a robust model. LV refers to
a series of factors used to build a reliable model, and a smaller number of components with
a lower error indicate a higher level of prediction accuracy [38].

In addition, a study was also conducted to determine whether a subset of wavelengths
is important for predicting nutrients. In this work, the weighted regression coefficients (BW)
of the PLS-R model were used to know the wavelengths of interest for the prediction of the
micro and macro elements. This method measures the association between each wavelength
and the content of the element under study, where wavelengths with large absolute BW
coefficient values are the most important in the model [39]. The BW coefficients were
calculated directly from the PLS loadings corresponding to the model with the optimum
number of LV [40]. This selection was only applied to the PLS-R models with an R2 higher
than 0.60.



Sensors 2023, 23, 6530 6 of 11

3. Results and Discussion
3.1. Descriptive Statistics of the Foliar Macro and Micronutrient Concentrations

Table 2 shows the descriptive statistical values of foliar macro and micronutrient
concentrations of the leaves taken throughout the crop cycle, as determined by ionomic
procedures. This table summarises the values found for all samples, but both the calibration
and validation sets had very similar values and distribution for the concentrations. The
values obtained for the sampling carried out in November are shown in brackets since it
is considered the optimal date for the nutritional diagnosis of citrus. N and Cu nutrients
were found to be deficient. The value obtained for P was low. Nutrients such as K, Na, S,
Fe, Mn, Zn, and B yielded an optimum value. The results obtained for Ca and Mg were
high. The classification was developed according to the reference parameters described in
Quiñones et al. [8].

Table 2. Ionomic analysis of the citrus leaves. Concentrations are expressed in % for macronutrients
(N, P, K, Ca, Mg, Na, S) and mg/kg for micronutrients (Fe, Cu, Mn, Zn, B) based on the dry
matter weight.

N P K Ca Mg Na S Fe Cu Mn Zn B

November 1.94 0.11 0.83 5.65 0.52 0.03 0.33 83.13 3.03 25.1 26.7 46.61

Mean 2.10
(D)

0.13
(L)

1.00
(O)

4.01
(H)

0.41
(H)

0.03
(O)

0.28
(O)

72.26
(O)

3.95
(D)

22.32
(O)

28.51
(O)

41.88
(O)

Max 2.78 0.22 1.71 6.57 0.68 0.06 0.37 149.9 14.8 54.93 57.64 94.9
Min 1.48 0.05 0.36 1.05 0.12 0.01 0.16 28.9 0.75 6.34 3.48 21.57
SD 0.29 0.04 0.35 1.36 0.13 0.01 0.05 27.65 2.77 11.44 14.25 12.12
Median 2.06 0.14 0.96 4.18 0.41 0.03 0.29 65.75 3.19 20.98 27.48 41.13

SD: standard deviation; D = deficient; L = low; O = optimum; H = high

3.2. PLS-R Models for Macro and Micronutrients Estimation

Table 3 presents the predictive results for each element using PLS-R with the optimal
spectra pre-treatment. The macronutrients P, K, and Ca showed the highest accuracy for
the calibration of the models using CV. The P model was calibrated using 10 LVs and MC,
with an R2 of 0.66 being obtained. The K model was calibrated using 12 LVs and MC + SNV,
with an R2 of 0.58, while Ca was calibrated using 7 LVs and MC + 1D, an R2 of 0.63 being
obtained. Using the test set, an R2 of 0.60 was achieved for P, and the K model obtained an
R2 of 0.63. However, the R2 for Ca was lower (0.53). In the case of N, the performance of
the model was lower, with an R2 of 0.57 being obtained.

Table 3. Results for calibration, cross-validation, and test sets using PLS-R.

Nutrient
Pre-

Treatment LVs
Calibration Cross-Validation Test Set

RMSE R2 RMSE R2 RMSE R2

N MC 10 0.18 0.58 0.18 0.55 0.19 0.57
P MC 10 0.02 0.69 0.02 0.66 0.02 0.60
K MC + SNV 12 0.21 0.65 0.23 0.58 0.22 0.63
Ca MC + 1D 7 0.65 0.67 0.69 0.63 0.73 0.53
Mg Raw 9 0.08 0.52 0.08 0.47 0.08 0.47
S MC 11 0.02 0.52 0.03 0.48 0.03 0.44

Fe MC 7 24.93 0.48 24.93 0.46 24.39 0.48
Cu Raw 9 0.93 0.33 0.95 0.29 0.93 0.31
Mn MC + SNV 12 7.73 0.53 8.42 0.44 8.07 0.49
Zn MC + 1D 7 9.94 0.50 10.52 0.44 10.25 0.46
B MC + 1D 7 5.26 0.70 5.75 0.64 5.83 0.69

LV: Latent variables; RMSE: Root mean square error; MC: mean centre; SNV: standard normal variate; 1D:
first derivative.
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Regarding the micronutrients, the model for B was the most accurate in calibration and
testing. This model was calibrated using 7 LV and MC + 1D, an R2 of 0.64 being obtained
in the CV and an R2 of 0.69 in the test. In all cases, a relatively low RMSE was achieved.

The results for macronutrient prediction were particularly noteworthy for P and
K: R2 = 0.60 using MC and R2 = 0.63 using MC + SNV, respectively. B had the highest
prediction accuracy for micronutrients, with an R2 = 0.69 obtained using an MC + 1D
pre-treatment. The models were less accurate for the rest of the micro and macronutrients
(R2 < 0.60).

Comparable results were achieved in previous scientific literature, but this study has
unique features that make the outcomes closer to natural crop stages. Osco et al. [41]
predicted the concentration of macro and micronutrients in ‘Valencia’ orange leaves using a
handheld spectroradiometer in the spectral range of 380 to 1020 nm. For the macronutrients,
the R2 range was between 0.62 and 0.90. However, the study was based on a limited test
set of 32 leaves and had several misconceptions. The methods used were primarily for
classification rather than regression, making it unclear how the coefficients of determination
were obtained.

Additionally, the number of leaves required for chemical analysis was not stated, and
only one leaf might not suffice to obtain the minimum amount required as with traditional
methods. Galvez-Sola et al. [18] used FT-NIR (830–2600 nm) to predict macronutrients for
six different citrus tree species, achieving R2 values ranging from 0.88 to 0.99. However, the
spectral measurements were conducted on powdered leaf samples, thus forfeiting some of
the primary advantages of these methods, such as simplicity and non-destructiveness, and
avoiding the need to process the samples. Since the different citrus species exhibit varying
nutrient concentrations, the results could be influenced by intrinsic species-specific factors.
Obtaining practical results would therefore require knowledge of the predictions for each
species independently. Menessatti et al. [17] employed Vis-NIR spectroscopy to determine
macronutrient levels in 20 Tarocco leaves. They observed high R2 for all nutrients except
for P. However, the experimental setup involved using a randomised block design with
five rates of N input at varying levels, ranging from 0 to 800 g N per tree per year, from
no N to twice the typical recommendations. As a result, the models could predict extreme
cases of nutrient deficiency or excess, but their ability to accurately predict or differentiate
nutrient concentrations under more typical fertilisation rates was not demonstrated. On the
contrary, the present study successfully captured the natural variability of nutrient values
observed in the field throughout the season under commercial recommendations.

3.3. Evaluation of Relevant Wavelengths for Prediction

Figure 2 shows the BW coefficients with the associated wavelengths for the most
accurate models (P, K and B). The important wavelengths selected for P, K, and B were close
to 440–530 nm and 560–690 nm. For P, the selected wavelengths, in order of importance,
were 483, 554, 689, 538, 454, 475, 520, and 612 nm. For K, they were 457, 538, 596, 688, 475,
560, and 499 nm, and for B, they were 472, 659, 506, 596, 443, 649, 683, 480, 562, 498, and
699 nm.

The wavelengths selected were all situated in the visible region (430–750 nm), which
is related to photosynthetic pigments that absorb about 90% or more of the incoming
light [42]. In contrast, there are no strongly absorbing molecules in the NIR, so plants
refract or transmit all but about 10% of the incoming radiation in this region [43]. This is
also compatible with the fact that deficiency or excess of some nutrients can affect pigment
accumulation in leaves, which has an influence on the absorption or refraction of specific
wavelengths of visible light. These photosynthetic pigments in the leaves are mainly
chlorophylls [44] and carotenoids [45], which play a crucial role in plant photosynthesis. In
this process, the plant forms sugars from the energy received from sunlight and CO2 that the
plant absorbs. Chlorophylls are divided into chlorophyll a (Chl-a) and chlorophyll b (Chl-
b), which are responsible for the characteristic green colour of leaves with an absorption
peak around 450 and 680 nm. On the other hand, carotenoids are divided into carotene a,
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carotene b and xanthophylls, and exhibit strong light absorption in the blue region of the
spectrum (450–500 nm) [46].
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Few studies have identified which individual wavelengths are the most important
in predicting macro and micronutrients in citrus leaves. Osco et al. [41] used a Vis-NIR
spectroradiometer to identify the optimal wavelengths and observed that all bands selected
to predict P were found in the visible region, while for K, they were located only in the
NIR region. In apple leaves, Azadnia et al. [47] used Vis-NIR spectroscopy and variable
importance in projection (VIP) scores to select the most important wavelengths for P and K.
For P, all the selected bands were also located mainly in the visible region (between 575
and 700 nm), except for one that was selected around 970 nm. In the case of K, they found
six spectral regions in the visible (between 505 and 700 nm) and NIR (between 920 and
965 nm).

This technology provides a detailed analytical view of nutrient content in plants for
rapid non-destructive estimates of macro and micronutrients in leaves, which will pave
the way to the planning of better and more efficient fertilisation systems under a precision
agriculture strategy. However, little research has been performed on using alternative
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techniques, such as Vis-NIR spectroscopy, for macro and micronutrient prediction in
orchard crops. The results achieved indicated that it is possible to perform relatively
accurate prediction for some nutrients such as P, K, and B, while it is necessary to continue
working to achieve better models for the others. Important wavelengths have been found
only in the visible part of the spectrum, which can guide future work to advance in this
direction. Chemometric methods are possibly the primary approach to analyze spectral
data. However, algorithms based on deep learning approaches could be further trained
and optimized to achieve robust results capturing the variability found in the samples
throughout the entire season. Moreover, this work also advances to achieve future field
measurements for macro and micronutrient prediction. Currently, there are no portable
spectral devices aimed at estimating nutrient concentration, and the closest solutions come
from chlorophyll meters used to estimate N, with limited success.

4. Conclusions

This work has studied the potential of Vis-NIR spectroscopy to predict the concen-
tration of nutrients in Clementina de Nules citrus leaves through a vegetative cycle as a
faster and non-destructive alternative to foliar ionomic analyses. The results showed a
good ability (R2 > 0.60) to estimate the concentrations of P, K, and B with relatively low
RMSE for the independent prediction set. The other nutrients studied were estimated with
relatively lower performance. Effective wavelengths were found in the visible region for
P, K, and B using the BW coefficients, which suggest that this region contains the most
relevant information for nutrient prediction. Hence, future works should focus on it.
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Artificial neural networks (ANN) Molybdenum (Mo)
Boron (B) Multiple linear regression (MLR)
Calcium (Ca) Near infrared spectroscopy (NIRS)
Carbon (C) Nitrogen (N)
Carbon dioxide (CO2) Nickel (Ni)
Chlorine (Cl) Oxygen (O)
Chlorophyll a (Chl-a) Partial least squares (PLS)
Chlorophyll b (Chl-b) PLS-regression (PLS-R)
Copper (Cu) Phosphorus (P)
Cross-validation (CV) Principal component regression (PCR)
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Emission spectrometry (ICP-OES) Random forest (RF)
First derivative (1D) Root mean square error (RMSE)
Fourier Transform NIR (FT-NIR) Standard normal variate (SNV)
Hydrogen (H) Sulphur (S)
Iron (Fe) Support vector machine (SVM)
Latent variables (LV) Variable importance in projection (VIP)
Magnesium (Mg) Visible (Vis)
Manganese (Mn) Weight regression coefficients (BW)
Mean centre (MC) Zinc (Zn)

References
1. Food and Agriculture Organization (FAO). Citrus Fruit. Fresh and Processed Statistical Bulletin 2020. Market and Trade

Commodities. Available online: https://www.fao.org/markets-and-trade/commodities/citrus/en (accessed on 7 July 2023).
2. United States Department of Agriculture (USDA). Citrus: World Market and Trade. Office of Global Analysis. Foreign Agriculture

Service. Available online: https://www.fas.usda.gov/data/citrus-world-markets-and-trade (accessed on 7 July 2023).
3. United States Department of Agriculture (USDA). Citrus Annual. Foreign Agricultural Service. Available online:

https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Madrid_
European%20Union_E42023-0001.pdf (accessed on 7 July 2023).

4. Marschner, P. Rhizosphere Biology. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012;
pp. 369–388.

5. Millard, P. Ecophysiology of the Internal Cycling of Nitrogen for Tree Growth. Z. Pflanzenernahr. Bodenkd. 1996, 159, 1–10.
[CrossRef]

6. Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen Supply Influences Photosynthesis Establishment along the Sugarcane Leaf. Sci. Rep.
2018, 8, 2327. [CrossRef] [PubMed]

7. Payne, R.J.; Dise, N.B.; Field, C.D.; Dore, A.J.; Caporn, S.J.M.; Stevens, C.J. Nitrogen Deposition and Plant Biodiversity: Past,
Present, and Future. Front. Ecol. Environ. 2017, 15, 431–436. [CrossRef]

8. Quinones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Abonado de Los Cítricos. In Guía Práctica de la Fertilización
Racional de los Cultivos en España; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; pp. 193–204.

9. Shenk, J.S.; Westerhaus, M.O.; Hoover, M.R. Analysis of Forages by Infrared Reflectance. J. Dairy Sci. 1979, 62, 807–812. [CrossRef]
10. Mcvicar, T.R.; Briggs, P.R.; King, E.A.; Raupach, M.R. A Review of Predictive Modelling from a Natural Resource Management Perspective:

The Role of Remote Sensing of the Terrestrial Environment By CSIRO; CSIRO Earth Observation Centre: Canberra, Australia, 2003.
11. Carter, G.A. Reflectance Wavebands and Indices for Remote Estimation of Photosynthesis and Stomatal Conductance in Pine

Canopies. Remote Sens. Environ. 1998, 63, 61–72. [CrossRef]
12. Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘Point’ Spectroscopy in Postharvest Fruit and Vegetable Assessment:

The Science behind Three Decades of Commercial Use. Postharvest Biol. Technol. 2020, 168, 111246. [CrossRef]
13. Guo, T.; Tan, C.; Li, Q.; Cui, G.; Li, H. Estimating Leaf Chlorophyll Content in Tobacco Based on Various Canopy Hyperspectral

Parameters. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3239–3247. [CrossRef]
14. Ling, B.; Goodin, D.G.; Raynor, E.J.; Joern, A. Hyperspectral Analysis of Leaf Pigments and Nutritional Elements in Tallgrass

Prairie Vegetation. Front. Plant Sci. 2019, 10, 142. [CrossRef]
15. Rodrigues, M.; Nanni, M.R.; Cezar, E.; dos Santos, G.L.A.A.; Reis, A.S.; de Oliveira, K.M.; de Oliveira, R.B. Vis–NIR Spectroscopy:

From Leaf Dry Mass Production Estimate to the Prediction of Macro- and Micronutrients in Soybean Crops. J. Appl. Remote Sens.
2020, 14, 044505. [CrossRef]

16. Dos Santos, G.L.A.A.; Reis, A.S.; Besen, M.R.; Furlanetto, R.H.; Rodrigues, M.; Crusiol, L.G.T.; de Oliveira, K.M.; Falcioni, R.; de
Oliveira, R.B.; Batista, M.A.; et al. Spectral Method for Macro and Micronutrient Prediction in Soybean Leaves Using Interval
Partial Least Squares Regression. Eur. J. Agron. 2023, 143, 126717. [CrossRef]

17. Menesatti, P.; Pallottino, F.; Antonucci, F.; Roccuzzo, G.; Intrigliolo, F.; Costa, C. Non-Destructive Proximal Sensing for Early
Detection of Citrus Nutrient and Water Stress. In Advances in Citrus Nutrition; Springer: Dordrecht, The Netherlands, 2012;
pp. 113–123. [CrossRef]

18. Galvez-Sola, L.; García-Sánchez, F.; Pérez-Pérez, J.G.; Gimeno, V.; Navarro, J.M.; Moral, R.; Martínez-Nicolás, J.J.; Nieves, M.
Rapid Estimation of Nutritional Elements on Citrus Leaves by near Infrared Reflectance Spectroscopy. Front. Plant Sci. 2015,
6, 571. [CrossRef]

19. Phanomsophon, T.; Jaisue, N.; Tawinteung, N.; Khurnpoon, L.; Sirisomboon, P. Classification of N, P, and K Concentrations
in Durian (Durio Zibethinus Murray CV. Mon Thong) Leaves Using near-Infrared Spectroscopy. Eng. Appl. Sci. Res. 2022, 49,
127–132.

20. Cuq, S.; Lemetter, V.; Kleiber, D.; Levasseur-Garcia, C. Assessing Macro- (P, K, Ca, Mg) and Micronutrient (Mn, Fe, Cu, Zn,
B) Concentration in Vine Leaves and Grape Berries of Vitis Vinifera by Using near-Infrared Spectroscopy and Chemometrics.
Comput. Electron. Agric. 2020, 179, 105841. [CrossRef]

21. Ayala-Silva, T.; Beyl, C.A. Changes in Spectral Reflectance of Wheat Leaves in Response to Specific Macronutrient Deficiency.
Adv. Space Res. 2005, 35, 305–317. [CrossRef]

https://www.fao.org/markets-and-trade/commodities/citrus/en
https://www.fas.usda.gov/data/citrus-world-markets-and-trade
https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Madrid_European%20Union_E42023-0001.pdf
https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Madrid_European%20Union_E42023-0001.pdf
https://doi.org/10.1002/jpln.1996.3581590102
https://doi.org/10.1038/s41598-018-20653-1
https://www.ncbi.nlm.nih.gov/pubmed/29396510
https://doi.org/10.1002/fee.1528
https://doi.org/10.3168/jds.S0022-0302(79)83330-5
https://doi.org/10.1016/S0034-4257(97)00110-7
https://doi.org/10.1016/j.postharvbio.2020.111246
https://doi.org/10.1007/s12652-018-1043-5
https://doi.org/10.3389/fpls.2019.00142
https://doi.org/10.1117/1.JRS.14.044505
https://doi.org/10.1016/j.eja.2022.126717
https://doi.org/10.1007/978-94-007-4171-3_9
https://doi.org/10.3389/fpls.2015.00571
https://doi.org/10.1016/j.compag.2020.105841
https://doi.org/10.1016/j.asr.2004.09.008


Sensors 2023, 23, 6530 11 of 11

22. Johnson, J.M.; Sila, A.; Senthilkumar, K.; Shepherd, K.D.; Saito, K. Application of Infrared Spectroscopy for Estimation of
Concentrations of Macro- and Micronutrients in Rice in Sub-Saharan Africa. Field Crops Res. 2021, 270, 108222. [CrossRef]

23. Yarce, C.J.; Rojas, G. Near Infrared Spectroscopy for the Analysis of Macro and Micro Nutrients in Sugarcane Leaves. Zuckerindus-
trie 2012, 137, 707–710. [CrossRef]

24. Chen, M.; Glaz, B.; Gilbert, R.A.; Daroub, S.H.; Barton, F.E.; Wan, Y. Near-Infrared Reflectance Spectroscopy Analysis of
Phosphorus in Sugarcane Leaves. Agron. J. 2002, 94, 1324–1331. [CrossRef]

25. Acosta, M.; Visconti, F.; Quiñones, A.; Blasco, J.; de Paz, J.M. Estimation of Macro and Micronutrients in Persimmon (Diospyros
Kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy. Agronomy 2023, 13, 1105. [CrossRef]

26. Acosta, M.; Rodríguez-Carretero, I.; Blasco, J.; de Paz, J.M.; Quiñones, A. Non-Destructive Appraisal of Macro- and Micronutrients
in Persimmon Leaves Using Vis/NIR Hyperspectral Imaging. Agriculture 2023, 13, 916. [CrossRef]

27. Bodenkunde, I. Inorganic Forms of Nitrogen in Soil. Nitrogen Agric. Soils 1982, 13, 43–66.
28. Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Elsevier: Cambridge, MA, USA, 1985; pp. 274–282.
29. Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, F.; Pari, L.; et al. Nitrogen

Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy. Sensors 2011, 11, 6411–6424. [CrossRef]
[PubMed]

30. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

31. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse
Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]

32. Alchanatis, V.; Schmilovitch, Z.; Meron, M. In-Field Assessment of Single Leaf Nitrogen Status by Spectral Reflectance Measure-
ments. Precis. Agric. 2005, 6, 25–39. [CrossRef]

33. Furlanetto, R.H.; Moriwaki, T.; Falcioni, R.; Pattaro, M.; Vollmann, A.; Sturion Junior, A.C.; Antunes, W.C.; Nanni, M.R.
Hyperspectral Reflectance Imaging to Classify Lettuce Varieties by Optimum Selected Wavelengths and Linear Discriminant
Analysis. Remote Sens. Appl. Soc. Environ. 2020, 20, 100400. [CrossRef]

34. Lindgren, F.; Geladi, P.; Wold, S. The Kernel Algorithm for PLS. J. Chemom. 1993, 7, 45–59. [CrossRef]
35. Dimov, I.; Georgieva, R.; Todorov, V. Balancing of Systematic and Stochastic Errors in Monte Carlo. In Algorithms for Integral

Equations; Springer: Cham, Switzerland, 2015; pp. 44–51. [CrossRef]
36. Todorov, V.; Dimov, I. Efficient Stochastic Approaches for Multidimensional Integrals in Bayesian Statistics; Springer: Cham, Switzerland,

2020; pp. 454–462. [CrossRef]
37. Cawley, G.C.; Talbot, N.L.C. Efficient Leave-One-out Cross-Validation of Kernel Fisher Discriminant Classifiers. Pattern Recognit.

2003, 36, 2585–2592. [CrossRef]
38. Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
39. Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression.

Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]
40. Frenich, A.G.; Jouan-Rimbaud, D.; Massart, D.L.; Kuttatharmmakul, S.; Galera, M.M.; Vidal, J.L.M. Wavelength Selection Method

for Multicomponent Spectrophotometric Determinations Using Partial Least Squares. Analyst 1995, 120, 2787. [CrossRef]
41. Osco, L.P.; Ramos, A.P.M.; Pinheiro, M.M.F.; Moriya, É.A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.; de Araújo, F.F.; Liesenberg, V.; de

Castro Jorge, L.A.; et al. A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral
Measurements. Remote Sens. 2020, 12, 906. [CrossRef]

42. Gates, D. Energy, Plants and Ecology. Ecology 1965, 46, 1–13. [CrossRef]
43. Jacquemoud, S.U.S. Modeling Leaf Optical Properties. Photobiological. Photobiological Sciences Online. Environmental

Photobiology. Available online: http://www.photobiology.info/#environ (accessed on 27 November 2018).
44. Sonobe, R.; Sano, T.; Horie, H. Using Spectral Reflectance to Estimate Leaf Chlorophyll Content of Tea with Shading Treatments.

Biosyst. Eng. 2018, 175, 168–182. [CrossRef]
45. Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance

Spectroscopy. Photochem. Photobiol. 2002, 75, 272. [CrossRef]
46. Demmig-Adams, B.; Gilmore, A.M.; Iii, W.W.A. In Vivo Functions of Carotenoids in Higher Plants. FASEB J. 1996, 10, 403–412.

[CrossRef]
47. Azadnia, R.; Rajabipour, A.; Jamshidi, B.; Omid, M. New Approach for Rapid Estimation of Leaf Nitrogen, Phosphorus, and

Potassium Contents in Apple-Trees Using Vis/NIR Spectroscopy Based on Wavelength Selection Coupled with Machine Learning.
Comput. Electron. Agric. 2023, 207, 107746. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.fcr.2021.108222
https://doi.org/10.36961/si13611
https://doi.org/10.2134/agronj2002.1324
https://doi.org/10.3390/agronomy13041105
https://doi.org/10.3390/agriculture13040916
https://doi.org/10.3390/s110606411
https://www.ncbi.nlm.nih.gov/pubmed/22163962
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1007/s11119-005-0682-7
https://doi.org/10.1016/j.rsase.2020.100400
https://doi.org/10.1002/cem.1180070104
https://doi.org/10.1007/978-3-319-15585-2_5
https://doi.org/10.1007/978-3-030-41032-2_52
https://doi.org/10.1016/S0031-3203(03)00136-5
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.chemolab.2012.07.010
https://doi.org/10.1039/an9952002787
https://doi.org/10.3390/rs12060906
https://doi.org/10.2307/1935252
http://www.photobiology.info/#environ
https://doi.org/10.1016/j.biosystemseng.2018.09.018
https://doi.org/10.1562/0031-8655(2002)075&lt;0272:ACCIPL&gt;2.0.CO;2
https://doi.org/10.1096/fasebj.10.4.8647339
https://doi.org/10.1016/j.compag.2023.107746

	Introduction 
	Materials and Methods 
	Samples 
	Spectral Acquisition 
	Foliar Ionomic Analysis 
	Chemometric Analysis 

	Results and Discussion 
	Descriptive Statistics of the Foliar Macro and Micronutrient Concentrations 
	PLS-R Models for Macro and Micronutrients Estimation 
	Evaluation of Relevant Wavelengths for Prediction 

	Conclusions 
	References

