
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Jose Ramon Acosta Motos,
Catholic University San Antonio of Murcia,
Spain

REVIEWED BY

Hamid Manzoor,
Bahauddin Zakariya University, Pakistan
Michel Edmond Ghanem,
Institut National de la Recherche
Agronomique (INRA), France

*CORRESPONDENCE
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Short-term water stress
responses of grafted
pepper plants are associated
with changes in the
hormonal balance
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Phytohormones play an important role in regulating the plant behavior to

drought. In previous studies, NIBER® pepper rootstock showed tolerance to

drought in terms of production and fruit quality compared to ungrafted plants. In

this study, our hypothesis was that short-term exposure to water stress in young,

grafted pepper plants would shed light on tolerance to drought in terms of

modulation of the hormonal balance. To validate this hypothesis, fresh weight,

water use efficiency (WUE) and the main hormone classes were analyzed in self-

grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER®

(V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition.

After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to

maintain water retention in the leaves. This can be explained by the higher

abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the

interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-

carboxylic acid (ACC), in relation to stomata closure is controversial, we observed

an important increase of ACC at the end of the experiment in V/N plants

coinciding with an important rise of the WUE and ABA. The maximum

concentration of jasmonic acid and salicylic acid after 48h was found in the

leaves of V/N, associated with their role in abiotic stress signaling and tolerance.

Respect to auxins and cytokinins, the highest concentrations were linked to

water stress and NIBER®, but this effect did not occur for gibberellins. These

results show that hormone balance was affected by water stress and rootstock

genotype, where NIBER® rootstock displayed a better ability to overcome short-

term water stress.
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1 Introduction

Drought stress is one of the most important environmental

factors negatively affecting agriculture production and it has been

aggravated in the last decade by climatic change worldwide (Gray

and Brady, 2016). Most crops are highly vulnerable to drought

stress, resulting in growth and production impairment with relevant

economic consequences (Vicente-Serrano, 2007).

Plants have developed several adaptive strategies to mitigate the

negative effects of water scarcity, evolving morpho-physiological,

phenological, biochemical, and genetic mechanisms (Basu et al.,

2016; Ullah et al., 2018). Plant roots are the first organs sensing soil

water deficit and this perception induces a complex signaling

network from root to shoot (and shoot to root), in which

hormones, reactive oxygen species (ROS), sugars, other

metabolites, and small nucleotides are mainly involved (Albacete

et al., 2014). Among them, phytohormones are the key mediators

of plant responses to drought stress, they are involved in the

tolerance strategies (Pérez-Alfocea et al., 2011; Ullah et al., 2018)

by producing chemical messengers which activate various

physiological processes to overcome drought stress (Fahad

et al., 2015).

Drought provokes osmotic stress that induces abscisic acid

(ABA) synthesis, which is implicated in the synthesis of

compatible osmolytes, the regulation of drought-responsive genes

expression, and the regulation of stomatal closure. Generally, ABA

synthesis occurs in the roots from where it is translocated to the

leaves via the xylem sap, inducing stomatal closure to decrease

water loss. However, several experiments have demonstrated that

ABA biosynthesis also takes place in leaves (Holbrook et al., 2002;

Manzi et al., 2017; López-Serrano et al., 2020), but also stomatal

closure can occur without the assistance of ABA root synthesis

(Holbrook et al., 2002).

Ethylene or its direct precursor 1-aminocyclopropane-1-

carboxyl acid (ACC) is highly mobile within the cell and can be

translocated basipetally via the phloem or acropetally through the

xylem (Druege, 2006). Both have been considered important

regulators of water stress responses by inducing leaf senescence,

epinasty, organs abscission, and leaf growth inhibition (Acosta-

Motos et al., 2020; Fatma et al., 2022).

Other hormones, such as auxins (IAA), cytokinins (CKs), and

gibberellins (GAs) are directly involved in the control of plant

growth and their concentrations can be environmentally modulated

(Werner et al., 2001; Sachs, 2005), playing critical roles during water

stress. However, they can have an opposite effect since high auxin

levels have been associated with drought tolerance, while GA

accumulation decreased tolerance (Ullah et al., 2018). CKs have

shown a dual role under water stress since positive but also negative

effects on drought tolerance have been reported (Zwack and

Rashotte, 2015; Li et al., 2016). A decrease in CK transport from

the root to the shoot could inhibit leaf growth while a low CK

content would promote root growth and modify the root/shoot

ratio (Rahayu, 2005).

Furthermore, jasmonic acid (JA) and salicylic acid (SA) are

hormones classically involved in biotic stress tolerance signaling (Li
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et al., 2003), and it is only recently that their importance in abiotic

stress responses has been revealed (Muñoz-Espinoza et al., 2015).

Water deficit increased JA levels in several species (Brossa et al.,

2011; Chen et al., 2016; de Ollas et al., 2018). Moreover, JA and SA

regulate stomatal conductance, increase root hydraulic

conductivity, enhance the scavenging of ROS by antioxidant

activity stimulation, and promote root development, thus

contributing to drought tolerance (Munné-Bosch and Peñuelas,

2003; Saruhan et al., 2012; Aslam et al., 2021). Their function is

directly related to their relative and absolute concentrations, when

SA and JA were equally applied externally at low concentrations

they acted synergistically, whereas applying high concentrations of

one hormone antagonized the other one (Mur et al., 2006).

It is important to note that the role of each phytohormone has

been frequently described considering individual signaling

pathways and not the hormonal interaction network, the spatial

organ distribution, the long-distance hormonal signaling, and the

type of crosstalk between hormones (positive or negative), which

can be dependent of the magnitude (time and intensity) of the water

stress. Indeed, different studies have demonstrated the hormonal

interactions taking place under drought stress, highlighting the

complexity of hormonal signaling cascades (Davies et al., 2005;

Muñoz-Espinoza et al., 2015; de Ollas et al., 2018; Ullah et al., 2018;

Devireddy et al., 2021; Huntenburg et al., 2022).

An important approach for discovering how long-distance

hormonal communication and how roots can alter the shoot

perception (or vice versa) under stress is the use of grafted plants.

Vegetable grafting has become an effective strategy to increase

tolerance under water stress (Rouphael et al., 2008; Penella et al.,

2014; Sánchez-Rodrıǵuez et al., 2016; López-Serrano et al., 2019;

Gisbert-Mullor et al., 2020; Padilla et al., 2021) by the use of tolerant

rootstocks that improve the physiological performance of plants

under drought conditions. Some studies have demonstrated that the

efficiency of tolerant rootstocks in overcoming water stress is related

to their higher capacity to absorb water and nutrients, maintain root

growth, achieve an active osmotic adjustment, and activate the

antioxidant defense systems (Rouphael et al., 2008; Yao et al., 2016;

Zhang et al., 2019a). This higher root efficiency under water stress

contributes to maintain the metabolic processes taking place in the

scion, sustaining plant growth and productivity. In addition,

hormonal communication plays an important role in achieving

water stress adaptation of grafted plants. Different combinations of

rootstocks and scions have different modes of phytohormone

synthesis transport (Lacombe and Achard, 2016; Lu et al., 2020)

and affect plant adaptability to stress. ABA is the main hormone

studied in grafted plants under water stress, because of its function

in controlling stomata closure. Most studies have been done in

tomato (Holbrook et al., 2002; Dodd et al., 2009; Ghanem et al.,

2011; Cantero-Navarro et al., 2016; Gaion et al., 2018; Zhang et al.,

2019b) and cucumber (Liu et al., 2016). However, there are no

reports on hormonal balance regulation in grafted pepper plants

exposed to water stress, being sweet pepper an important vegetable

crop, thoroughly cultivated in the Mediterranean area, where water

shortage is a major problem limiting productivity (Penella et al.,

2014). Even more, the availability of rootstocks tolerant to water
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stress is lacking in pepper plants (Lee et al., 2010; Penella et al., 2014;

Kyriacou et al., 2017). Nevertheless, to fill this gap we have obtained

by a classic breeding program a water stress tolerant rootstock,

NIBER®, an F1 hybrid that has been tested under field conditions

achieving greater yields than the ungrafted variety (Gisbert-Mullor

et al., 2020). Mechanisms by which NIBER® rootstock modulates

plant performance under water stress, particularly hormonal

balance, neither have not been fully unraveled.

Therefore, the present work aimed to determine whether the

water stress tolerance observed in pepper plants grafted onto

NIBER® in terms of productivity is associated with changes in

the hormonal balance in early stage of grafted plant development

and identify the hormones role responsible for the drought

tolerance in rootstock and scion. Understanding the interactive

hormonal mechanism can be effective for the development to

tolerant rootstocks.

To fulfill this, we compared the hormonal profiles (ACC, CKs,

GAs, ABA, IAA, JA, and SA) in roots and leaves of two pepper graft

combinations (variety grafted onto NIBER® and self-grafted

variety) under optimal and short-term water stress conditions.
2 Materials and methods

2.1 Plant material

Based on our previous studies (Gisbert-Mullor et al., 2020), a

hybrid pepper rootstock tolerant to water stress i.e., NIBER®

(Capsicum annuum x C. annuum, abbreviated as N) was

employed in this study. Two plant combinations were herein

used: the commercial pepper variety “Maestral F1” (sweet pepper,

California-type, Semillas Fitó, Spain, abbreviated as V) was grafted

onto NIBER® (abbreviated as V/N) and the self-grafted plants

(abbreviated as V/V), thus considering the grafting effect. Early in

March, the seeds of V and N were sown in 104 seedling trays filled

with a peat-based substrate for germination. The grafts were

performed after 2 months using the tube-grafting method

(Penella et al., 2015). The grafted plants were maintained in a

chamber with relative humidity above 95% and air temperature

around 28-29°C for a 4-6 day period to successfully join rootstock

and scion (Penella et al., 2014).
2.2 Hydroponic greenhouse conditions

Three weeks after grafting (by the beginning of June), seedlings

were removed from the substrate and their roots were cleaned before

being placed in 2L polyethylene pots in a Venlo-type greenhouse

situated in Valencia (Spain, 39° 29’ 1.135” N 0° 20’ 27.315”W) under

natural light conditions (610-870 µmol m-2 s-1) and temperature and

relative humidity ranges of 21-25°C and 52-72%, respectively. Pots

were filled with a nutrient solution containing (in mmol L-1): 13.0

NO3
-, 1.0 H2PO4

-, 2.45 SO4
2-, 1.6 Cl-, 1.0 NH4

+, 6.0 K+, 4.0 Ca2+, 2.5

Mg2+, 0.5 Na+ and micronutrients (15.8 µM Fe2+, 10.3 µM Mn2+, 4.2

µM Zn2+, 43.5 µM B+, 2.14 µM Cu2+), that were artificially aerated

with an air pump. The electrical conductivity and pH of the nutrient
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solution were 2.1 dS m-1 and 6.7, respectively. After 7 days of seedling

acclimation to the pots, the water stress treatment was initiated by

adding 5% PEG 8000 (Sigma Co.) to the nutrient solution. The

osmotic potential of the nutrient solutions, measured by a vapor

osmometer (Digital osmometer, Wescor, Logan, USA), were -0.55

MPa for 5% PEG and -0.05 MPa for the control solution (0% PEG).

The layout was a completely randomized design with 20 plants per

combination (V/V and V/N) and treatment (5% PEG and control).
2.3 Fresh weight determination

Fresh weight determinations were performed at the end of the

experiment (48h) using the plants that were not used for the

hormonal analysis. Four plants per graft combination and

treatment were analyzed by measuring the fresh weight of leaves

and roots. The data are shown as a percentage of water stress over

control conditions for self-grated (V/V) and variety grafted onto

NIBER® (V/N).
2.4 Photosynthesis analysis

Gas exchange measurements were performed at the beginning

(T0) and the end of the experiment (T48). The gas exchange

measurements were taken in the morning (9.30 am to 10.30 am

GMT) with four plants per graft combination and treatment. The

net CO2 assimilation rate (AN, mmol CO2 m-2 s-1), stomatal

conductance (gs, mol H2O m-2 s-1), and transpiration rate (E,

mmol H2O m-2 s-1) were determined on fully expanded leaves

(3rd - 4th leaf from the apex) in the steady-state under saturating

light conditions (1000 mmol m-2 s-1) and with 400 ppm CO2 by a LI-

6400 infrared gas analyzer (LI-COR, Nebraska, USA) at 24 ± 2°C

and 65 ± 10% relative humidity. Parameters AN/gs and AN/Eleaf
were calculated as intrinsic water use efficiency and instantaneous

water use efficiency, respectively.
2.5 Sampling for hormonal analysis

The samples (leaves and roots) for hormonal analysis were

taken before PEG addition (T0), and 4h (T4), 24h (T24), and 48h

(T48) after water stress treatment began. Measurements were taken

in fully expanded mature leaves (3rd – 4th leaf from the shoot apex)

and 2 cm from distal roots. The layout was randomized with 4

samples of independent plants. The samples were frozen in liquid

nitrogen immediately after harvest, conserved at −80°C, and

afterwards freeze-dried.
2.6 Hormone extraction and analysis

Cytokinins (trans-zeatin, tZ, zeatin riboside, ZR, and

isopentenyl adenine, iP), gibberellins (GA1, GA3, and GA4),

indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid

(SA), jasmonic acid (JA) and the ethylene precursor 1-
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170021
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Padilla et al. 10.3389/fpls.2023.1170021
aminocyclopropane-1-carboxylic acid (ACC) were analyzed

according to Albacete et al. (2008) and Großkinsky et al. (2014)

with some modifications. Briefly, 40 mg of freeze-dried plant

material were homogenized and dropped in 1 ml of cold (-20°C)

extraction mixture of methanol/water (80/20, v/v). Solids were

separated by centrifugation (20000 g, 15 min) and re-extracted

for 30 min at 4°C in additional 1 mL of the same extraction solution.

Pooled supernatants were passed through Sep-Pak Plus †C18

cartridge (SepPak Plus, Waters, USA) to remove interfering lipids

and part of plant pigments and evaporated at 40°C under vacuum

either to near dryness or until the organic solvent was removed. The

residue was dissolved in 0.5 mL methanol/water (20/80, v/v)

solution using an ultrasonic bath. The dissolved samples were

filtered through 13 mm diameter Millex filters with 0.22 µm pore

size nylon membrane (Millipore, Bedford, MA, USA).

Ten µL of filtrated extract were injected in a U-HPLC-MS

system consisting of an Accela Series U-HPLC (ThermoFisher

Scientific, Waltham, MA, USA) coupled to an Exactive mass

spectrometer (ThermoFisher Scientific, Waltham, MA, USA)

using a heated electrospray ionization (HESI) interface. Mass

spectra were obtained using the Xcalibur software version 2.2

(ThermoFisher Sc ient ific , Wal tham, MA, USA) . For

quantification of the plant hormones, calibration curves were

constructed for each analyzed component (1, 10, 50, and 100 µg
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L-1) and corrected for 10 µg L-1 deuterated internal standards.

Recovery percentages ranged between 92 and 95%.
2.7 Statistical analysis

Data for each measure time (T0, T4, T24 and T48) and

parameter were subject to an analysis of variance using

Statgraphics Centurion 18 (Statgraphics Technologies, Inc., The

Plains, Virgina, USA). The mean comparisons were performed

using Fisher’s least significance difference (LSD) test at P ≤ 0.05.
3 Results

3.1 Fresh weight

The fresh weight of leaves (Figure 1A) was affected by water

stress at the end of the experiment with significant differences for

both plant combinations, with a 28% and 83% reduction in V/N and

V/V respectively, compared with control conditions. The fresh root

weight (Figure 1B) was less affected by water stress without

significant differences, the reduction was 12% and 8% for V/V

and V/N, respectively and respect to their controls.
A

B

FIGURE 1

Percentage fresh weight in leaves (A) and roots (B) under water stress conditions compared to control conditions in the selfgrafted plants (V/V) and
V grafted onto NIBER® (V/N). Values are mean for n = 4. Different letters are statistically different according with LSD test (P ≤ 0.05).
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3.2 Photosynthetic parameters

Instantaneous water use efficiency (AN/E) (Figure 2A) did not

show significant differences at T0 for V/V and V/N with values

between 1.8-2.2. After 48h, all plants with PEG treatment increased

significantly the AN/E values. The increase with respect to its

control plants was 47% for V/V and 44% for V/N, being the

highest values for V/N-WS Regarding intrinsic water use

efficiency (AN/gs) (Figure 2B), differences between genotypes were

already observed at T0, V/V showed lower values compared with V/

N. At the end of the experiment, plants under PEG treatment

exhibited higher values with significant differences respect to

control plants, plus the highest rise was observed in V/N plants.
3.3 Hormonal profiling

3.3.1 ACC
In general terms, ACC levels were higher in roots than in leaves,

reaching up to 4.5-fold as a mean value for all times and all plant

combinations. At T0, in the control treatment, V/V and V/N did

not show significant differences either in roots or in leaves

(Figures 3A, B). From T4 to T48, ACC concentration remained

constant for each plant combination and treatment except at T24
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for V/V in roots and at T48 for V/N in leaves, when the highest

ACC levels were observed in response to water stress.

3.3.2 ABA
In contrast to ACC, the ABA concentrations were higher in

leaves than in roots. Similar to ACC at T0, ABA levels in roots and

leaves (Figures 3C, D) did not display significant differences

between V/V and V/N. In roots, at T4 and T24 the highest values

were found in V/N-WS, while at the end of the experiment (T48)

the ABA levels for this plant combination decreased by 54%. In

leaves,V/N-WS ABA concentrations reached the highest values at

T48 with significant differences. At T48 in roots and leaves, the

lowest ABA values were found in V/V control plants, with

significant differences to the rest of the plant combinations

and treatments.

3.3.3 IAA
In roots, IAA concentration (Figure 4A) remained constant in

V/N control and in V/V-WS decreased along the experiment.

Nevertheless, for the rest of the plant combinations and

treatments there was an erratic behavior, highlighting the IAA

decrease from T24 to T48 for V/V control and the increase for V/N-

WS. In leaves, IAA levels (Figure 4B) increased along the

experiment (except for V/V control), reaching the maximum
A

B

FIGURE 2

Instantaneous water use efficiency (AN/E) (A) and intrinsic water use efficiency (AN/gs) (B) in the self-grafted pepper plants (V/V) and the plants
grafted onto NIBER® (V/N) at 0% PEG (control, C) or 5% PEG (water stress, WS). Measurements were taken on T0 and T48 (hours after treatment
with PEG began). Data are the mean values for n = 4. For each studied time, different letters indicate significant differences at P ≤ 0.05 (LSD test).
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values at the end of the experiment in V/V-WS and V/N control,

without significant differences with V/N-WS.

3.3.4 CKs
CKs levels were 9-fold lower in leaves than roots, showing

different dynamics in both organs. In roots, CKs levels (Figure 4C)

remained constant after a decrease from T0 to T4, except for a

sustained increase in V/N-WS at T24, following a decrease to the

lowest CKs concentrations at the end of the experiment. In leaves

(Figure 4D), CKs behavior resembled IAA role, with an increase

from T4 to T48 for all plant combinations and treatments without

significant differences between them at the end of experiment.

3.3.5 GAs
The concentrations of GAs were similar in leaves and roots

(Figures 4E, F). In roots, an increase was observed in V/N control

and V/V-WS from T4 to T48. In leaves, in response to water stress,

a peak of GAs was detected at T24 in V/N-WS, decreasing later to
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reach similar values to the control plants. The lowest GA values

were found in V/V plants under control and water stress conditions.

3.3.6 JA
In roots, the levels of JA (Figure 5A) were 9-fold (as average)

higher than in leaves. In roots, both treatments showed a differential

trend. The highest values were observed in control conditions with a

peak in both plant combinations at T24. Under water stress, V/V

and V/N displayed the lowest values, without significant differences

between them. However, in leaves (Figure 5B), a peak at T24 in the

JA levels was observed for all plant combinations and treatments,

following a decrease until T48, being the highest values for V/N-WS

and the lowest values for V/V-WS, with significant differences.

3.3.7 SA
In roots, increased SA concentrations in response to water stress

were detected at T24 for V/V and V/N (Figure 5C). From T24 to

T48 SA levels decreased to similar values for all plant combinations
A B

DC

FIGURE 3

ACC (A, B) and ABA (C, D) levels in roots and leaves of self-grafted pepper plants (V/V) and the plants grafted onto NIBER® (V/N) at 0% PEG (control,
C) or 5% PEG (water stress, WS). Measurements were taken on T0, T4, T24 and T48 (hours after treatment with PEG began). Data are the mean
values for n = 4. For each studied time, different letters indicate significant differences at P ≤ 0.05 (LSD test).
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and treatments, without significant differences between them. A

different evolution was observed in leaves (Figure 5D) with respect

to roots, with a constant drop along the experiment in all plants and

treatments, standing up V/N-WS with the highest concentration at

T4. At the end of the experiment, two groups were separated, with

highest SA levels belonging to water-stressed plants and lowest

values to control plants.
Frontiers in Plant Science 07
4 Discussion

The study of hormone signaling fine-tuning during the early

state of water stress exposure could help to distinguish and

understand the tolerance responses in grafted plants mediated by

efficient rootstocks. Indeed, plant hormones play a key role in

controlling the adaptive processes to water stress, involving long-
A B

D

E F

C

FIGURE 4

IAA (A, B), CKs (C, D) and GAs (E, F) concentration in roots and leaves of self-grafted pepper plants (V/V) and the plants grafted onto NIBER® (V/N) at
0% PEG (control, C) or 5% PEG (water stress, WS). Measurements were taken on T0, T4, T24 and T48 (hours after treatment with PEG began). Data
are the mean values for n = 4. For each studied time, different letters indicate significant differences at P ≤ 0.05 (LSD test).
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distance communication between different organs of plants together

with in situ phytohormone synthesis (Albacete et al., 2008; Acosta-

Motos et al., 2020; Lu et al., 2020).

Under water stress, roots are the first organs to perceive the

osmotic stress, causing a rapid loss of shoot turgor and stomata

closure, within minutes and hours (Munns, 2002). In this study, we

observed at 48h that osmotic stress provoked a higher increase in

AN/gs in V/N than in V/V. This indicates that the regulation of

stomatal closure is more efficient in the V/N combination, thus

allowing major water accumulation in the leaves. In this sense, the

fresh weight loss on leaves caused by osmotic stress was reduced in

V/N plants compared to V/V, since N was considered as a tolerant

rootstock. However, no effect was detected in the fresh weight of the

roots in both graft combinations, indicating that the leaves were

more sensitive to osmotic stress than the roots. Several authors

(Hsiao and Xu, 2000; Sharp, 2002; López-Serrano et al., 2019) have

also observed this differential response between roots and leaves.

This is interesting because V/N water requirements and use should
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be lower, implicating positive economic and environmental effects.

Indeed, graft technology has been used as an effective tool to

increase WUE under water stress in vegetable crops like tomato

(Cantero-Navarro et al., 2016; Gaion et al., 2018; Fullana-Pericàs

et al., 2020), pepper (Gisbert-Mullor et al., 2020; Padilla et al., 2021)

or cucumber (Liu et al., 2016).

Water relations traits are controlled by hormonal signals from

root to shoot and shoot to root. Currently, ABA is the primary

hormone that modulates stomatal performance contributing to the

regulation of water-mediated stomatal closure and plays a key role

in drought resistance (Holbrook et al., 2002; Gaion et al., 2018; Yang

et al., 2022). Under short-term water stress, it has been described

that ABA is synthesized mainly in the roots and afterward

transported into guard cells to trigger stomata closure in leaves

(Wilkinson and Davies, 2002; Allario et al., 2013; Sarwat and Tuteja,

2017). We found a fast induction (T4) of ABA concentration under

water stress in V/N for roots and leaves, but only for the leaves in V/

V. This suggests that the roots of a tolerant water stress rootstock
A B

DC

FIGURE 5

JA (A, B) and SA (C, D) levels in roots and leaves of self-grafted pepper plants (V/V) and the plants grafted onto NIBER® (V/N) at 0% PEG (control, C)
or 5% PEG (water stress, WS). Measurements were taken on T0, T4, T24 and T48 (hours after treatment with PEG began). Data are the mean values
for n = 4. For each studied time, different letters indicate significant differences at P ≤ 0.05 (LSD test).
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such as NIBER® were more sensitive to changes in the osmotic

potential of the nutrient solution. As a consequence, V/N speeded

up ABA synthesis in roots and transport to the leaves (Liu et al.,

2016), as it can be observed in ABA rise at T48 in leaves coinciding

with ABA decrease in roots. Hence, a differential rootstock behavior

was observed under water stress, with an ABA hypersensitivity or

biosynthesis to ABA in V/N plants that can increase WUE in the

scion thus enhancing stress tolerance. Similar responses were

observed in different vegetable-grafted plants using tolerant

rootstocks under water stress, such as cucumber grafted onto luffa

(Liu et al., 2016) and tomato grafted onto different recombinant

inbred lines from Solanum pimpinellifolium (Cantero-Navarro

et al., 2016). Considering that the ABA levels in leaves were

higher than in the roots in all plant combinations and treatments,

the synthesis of ABA in the scion cannot be ruled out (Manzi et al.,

2017; López-Serrano et al., 2020).

ABA and ethylene (or its precursor ACC) regulate stress

responses in coordinated ways, in senescence, flooding, drought,

and wounding stresses, and have been considered important WUE

regulators under stress conditions (Wilkinson, 2004; Cantero-

Navarro et al., 2016). However, the interaction between ethylene

and ABA in relation to stomata closure is controversial and still not

fully understood (Wilkinson et al., 2012; Chen et al., 2013).

Generally, ABA and JA are positive regulators of stomata closure,

while IAA and CKs have been described as negative regulators.

However, the regulatory role of ethylene on stomata behavior is

ambiguous, acting as a positive or negative regulator depending on

the tissue and environmental conditions (Nemhauser et al., 2006;

Huang et al., 2008; Daszkowska-Golec and Szarejko, 2013). In this

sense, under water stress, elevated ABA levels usually limited

ethylene production in maize plants (Sharp et al., 1994). In

Arabidopsis thaliana, ethylene physiologically inhibited ABA-

dependent stomata closure through the ethylene signaling

pathway (Tanaka et al., 2005). Despite the apparent antagonist

relation between ABA and ethylene under water stress (Spollen

et al., 2000), in A. thaliana ethylene signaling was promoted during

short-term ABA treatment (ERF1, EDF1 and EDF4 up-regulated)

(Yang et al., 2014). In citrus (Tudela and Primo-Millo, 1992) and

pea (Belimov et al., 2009), water stress induced an increase in ACC

concentrations. Additionally, in grafted tomato plants, ACC in the

roots could increase agronomic WUE (Cantero-Navarro et al.,

2016). These results show that ethylene also plays an important

role in stomatal control (Desikan et al., 2006; Vysotskaya et al.,

2011). We did not find dramatic changes in ACC levels in leaves,

except for an important increase at the end of the experiment (after

48h of water stress) in plants grafted onto NIBER®, coinciding with

a significant rise of intrinsic WUE and ABA. These results could

indicate that ACC is promoted at the initial stage of ABA-

dependent control of water stress, using ACC as a rapid response

to accelerate tolerance in V/N (Yang et al., 2014). Importantly, this

effect was not observed in V/V plants, and only a maximum ACC

concentration was measured at T24 in roots following an important

decrease at T48h. This drop was not associated with an increase in

leaves, which could indicate ACC degradation in the roots.

In addition to ABA and ethylene, JA and SA are also involved in

the stomata response under water stress (Nazareno and Hernandez,
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2017; Munemasa et al., 2019; Müller and Munné-Bosch, 2021). JA

and 12-OPDA (JA precursor) are positive regulators of stomata

closure, leading to increased drought stress tolerance (Savchenko

and Dehesh, 2014). However, we did not find any change in JA

concentrations in the root system under water stress, indicating that

JA is not a primary hormonal factor controlling drought stress and/

or there was an early transient increase. Similarly, other studies did

not find changes in JA under water stress, possibly due to JA

accumulation being characterized as early transient (within 3h),

therefore being dependent on the measure time (Luo et al., 2019;

Wang et al., 2020; Huntenburg et al., 2022). In the leaves, the

highest JA levels at the end of the experiment were found in V/N

under water stress, which coincides with increased levels of ABA

and ACC and stomata closure. Regarding SA, its role has been

associated with biotic stress defense responses (Vlot et al., 2009).

Recently, different research works have suggested that SA can have

an important contribution to abiotic stress-induced signaling and

tolerance (Miura and Tada, 2014; Zandalinas et al., 2016). However,

the effect of SA on water stress tolerance is still unclear (Borsani

et al., 2001). In our experimental conditions, SA increased at T24h

in the roots mainly under water stress in both plant combinations,

thus indicating that SA may be involved in drought responses. SA

content augmented approximately 2-fold with water stress in barley

roots associated to ABA increase (Bandurska and Stroinski, 2005),

corresponding to our observations at T24h. In leaves, SA has been

described to be implicated in stomata closure (Mori et al., 2001; Liu

et al., 2013; Prodhan et al., 2018), and in the enhancement of

antioxidants and antioxidant enzymes mainly to protect the

photosynthetic apparatus (Miura and Tada, 2014; Khan et al.,

2015; Zandalinas et al., 2016). The endogenous SA accumulation

in leaves has been detected in several crops like citrus (Zandalinas

et al., 2016), mustard (Alam et al., 2013), and Phyllyrea angustifolia,

where SA levels were correlated with the water stress degree,

increasing up to 5-fold under severe stress, thus suggesting a role

for SA in drought tolerance (Munné-Bosch and Peñuelas, 2003). In

pepper leaves, a drastic SA increase occurred immediately after

water stress was applied only in V/N plants. Afterwards, SA

concentrations decreased to reach values similar to V/V values,

but higher than V/N control plants. This could indicate that SA

accumulation is related to water stress, but it is also dependent on

the rootstock genotype.

IAA, CKs, and GAs are hormones related to plant growth and

development, and they are also involved in regulating drought

responses (Devireddy et al., 2021; Raza et al., 2022). However, the

variations of these hormones content under water stress are

contradictory in our experiment. In roots under water stress, IAA

content showed a gradual decline in V/V from T4 until the end of

the experiment, but in V/N plants the IAA decrease occurred at T24

and, thereafter, IAA concentration increased up to a maximum.

Regarding the concentrations of CKs under water stress, a transient

increase at T24 in V/N was observed in roots and then CK levels

declined to reach values similar to the optimal watering conditions

and to the rest of the plant combinations and treatments. In both

hormones, the highest concentrations were linked to water stress

and to water stress tolerant rootstock (NIBER®), but this effect was

not observed for GAs. IAA and CKs promote root branching and
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root growth, having a potential role in drought-tolerance

mechanisms (Verma et al., 2016; Ullah et al., 2018). By using

NIBER® as rootstock under salinity conditions for 10 days, a

significant increase in root length was stated (López-Serrano

et al., 2020), which could explain the increase in IAA and CKs

when NIBER® is used under the osmotic treatment. In addition,

increasing endogenous IAA levels in roots under osmotic stress

have been associated with enhanced tolerance in Arabidopsis (Kim

et al., 2013) and Prosopis strombulifera (halophyte) (Llanes et al.,

2014) due to an increase in lateral root formation and enlarged root

system (Llanes et al., 2016).

However, the GA trend in roots did not seem to be dependent

on either water stress or rootstock genotype, considering that there

were no significant differences between V/V and V/N at the end of

the experiment.

In the leaves, IAA and CK levels increased along the experiment,

but no significant differences were observed between both rootstock

and treatments, which could indicate a poor relation with water

stress. Increasing IAA in maize leaves was observed on the first day

under water stress (provoked by PEG addition, -0.4MPa) (Wang

et al., 2008) with an osmotic potential similar to the one used in this

experiment. The increase of CKs has been related to an amelioration

of the effect of water stress by stimulating osmotic adjustment and

allowing water absorption. However, the increase in IAA and CKs in

the majority of studies is associated with stimulated stomata opening

and they are considered as ABA antagonists (Pospıśǐlová, 2003;

Gaion et al., 2018). The stomata closure observed in our study

could be the consequence of crosstalk between concentration and

action place (Ullah et al., 2018; Iqbal et al., 2022).

Regarding GAs in leaves, they can modulate drought responses

through stomata development and responses (Nir et al., 2014;

Gaion et al., 2018). In our results, an important transient increase

in leaves at T24 was recorded in V/N under water stress.

Subsequently, GA levels declined to reach control values, and no

differences in GA content associated with water stress were

observed at the end of the experiment, although there were

significant differences between rootstocks. Several studies have

demonstrated that the reduction of GA levels contributes to plant

growth restriction under drought (Llanes et al., 2016). Besides, in

halophyte and some no-halophyte tolerant plants, GA

concentrations in leaves increased in response to an osmotic

potential decrease to maintain the growth (Li et al., 2012;

Colebrook et al., 2014; Llanes et al., 2016). The transient increase

observed in V/N under water stress could be associated with GA

modulation and signaling for growth preservation.

The knowledge about endogenous phytohormone modulation

in response to water stress remains scarce given that most plants’

hormonal studies are based on exogenous applications. Overall, this

work reflects the fast modulation of the balance of major

phytohormones during short-term water stress in young pepper

plants, self-grafted or grafted onto a water stress tolerant rootstock

such as NIBER®. Phytohormone levels during early water stress

exposure (up to 48h) revealed natural variability present in V/V and

V/N and how V/N integrates various hormonal signals to tolerate

drought imposition. It is essential to determine the water stress
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tolerance mechanisms and to find the key factors responsible for

short-term tolerance, such as hormones. Therefore, this study will

allow to understand the early differential responses to water stress in

grafted pepper plants and the contribution of NIBER® rootstock

hormonal balance to scion water stress improvement. This study

will be crucial to extend knowledge and open the door to future

biotechnological strategies to improve drought tolerance. However,

due to the high level of complexity of the phytohormones network,

further studies are required.
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de Ollas, C., Arbona, V., Gómez-Cadenas, A., and Dodd, I. C. (2018). Attenuated
accumulation of jasmonates modifies stomatal responses to water deficit. J. Exp. Bot. 69,
2103–2116. doi: 10.1093/jxb/ery045

Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., et al.
(2006). Ethylene-induced stomatal closure in arabidopsis occurs via AtrbohF-mediated
hydrogen peroxide synthesis. Plant J. 47, 907–916. doi: 10.1111/j.1365-
313X.2006.02842.x

Devireddy, A. R., Zandalinas, S. I., Fichman, Y., and Mittler, R. (2021). Integration of
reactive oxygen species and hormone signaling during abiotic stress. Plant J. 105, 459–
476. doi: 10.1111/tpj.15010

Dodd, I. C., Theobald, J. C., Richer, S. K., and Davies, W. J. (2009). Partial
phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions
by a wild-type rootstock: normalizing shoot ethylene relations promotes leaf area but
Frontiers in Plant Science 11
does not diminish whole plant transpiration rate. J. Exp. Bot. 60 (14), 4029–4039.
doi: 10.1093/JXB/ERP236

Druege, U. (2006). “Ethylene and plant responses to abiotic stress,” in Ethylene
action in plants (Berlin, Heidelberg: Springer Berlin Heidelberg), 81–118. doi: 10.1007/
978-3-540-32846-9_5

Fahad, S., Nie, L., Chen, Y., Wu, C., Xiong, D., Saud, S., et al. (2015). Crop plant
hormones and environmental stress. In: Lichtfouse, E. (eds) Sustainable Agriculture
Reviews. (Springer, Cham) 15, 371–400. doi: 10.1007/978-3-319-09132-7_10

Fatma, M., Asgher, M., Iqbal, N., Rasheed, F., Sehar, Z., Sofo, A., et al. (2022).
Ethylene signaling under stressful environments: analyzing collaborative knowledge.
Plants 11, 2211. doi: 10.3390/plants11172211

Fullana-Pericàs, M., Conesa, M.À., Ribas-Carbó, M., and Galmés, J. (2020). The use
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López-Serrano, L., Canet-Sanchis, G., Selak, G. V., Penella, C., San Bautista, A.,
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