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Abstract: Tetranychus urticae Koch is an important citrus pest that produces chlorotic spots on the
leaves and scars on the fruit of affected trees. It is detected by visual inspection of the leaves. This
work studies the potential of colour and hyperspectral imaging (400–1000 nm) under laboratory
conditions as a fast and automatic method to detect the damage caused by this pest. The ability
of a traditional vision system to differentiate this pest from others, such as Phyllocnistis citrella,
and other leaf problems such as those caused by nutritional deficiencies, has been studied and
compared with a more advanced hyperspectral system. To analyse the colour images, discriminant
analysis has been used to classify the pixels as belonging to either a damaged or healthy leaves. In
contrast, the hyperspectral images have been analysed using PLS DA. The rate of detection of the
damage caused by T. urticae with colour images reached 92.5%, while leaves that did not present any
damage were all correctly identified. Other problems such as damage by P. citrella were also correctly
discriminated from T. urticae. Moreover, hyperspectral imaging allowed damage caused by T. urticae
to be discriminated from healthy leaves and to distinguish between recent and mature leaves, which
indicates whether it is a recent or an older infestation. Furthermore, good results were achieved in
the discrimination between damage caused by T. urticae, P. citrella, and nutritional deficiencies.

Keywords: two-spotted spider mite; red spider mite; integrated pest management; citrus damage;
optical sensors; image processing; automated monitoring pest

1. Introduction

Spain is the world’s sixth largest producer of citrus and the first exporter of fruit
for the fresh market [1]. Therefore, the external quality of fruits is a key factor in the
purchase decision, and the pests that cause direct damage to these fruits are of crucial
importance [2,3]. Among pests, mites are one of the major problems of citrus, including
the citrus rust mite and the citrus red mite. Tetranychus urticae Koch (Acari: Tetranychidae),
also called the two-spotted spider mite, is one of the economically most important pests in
a wide range of outdoor and protected crops worldwide [4]. In Spain, T. urticae is a key
pest of citrus [5–7] and affects especially clementine mandarin trees [8–10] because they are
susceptible to outbreaks of this mite [11].

In summer, under Mediterranean conditions, T. urticae colonies are preferably located
on the underside of the citrus leaves, where they are protected with silk threads. The
mite feeds on the content of the epidermal and parenchyma cells of the leaves [12]. As
a result of their feeding, they cause discolouration and desiccation, which in most cases
is manifested by chlorotic (yellowish and rarely brown) spots and bulges on the upper
side of the leaves [13]. Two-spotted spider mite damage also produces webbing and fine
stippling. However, where it is most damaging is on the fruit because it causes rusty spots
that spread throughout the fruit [6]. These injuries result in significant reductions in the
quality of clementine tangerines, which downgrades the fruit and severely lowers the fresh
market prices [14,15].
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Under the integrated pest management (IPM) strategy, producers assess the presence
of this pest on a weekly or biweekly basis between July and September, depending on the
incidence of the pest [10]. This evaluation is carried out manually by placing two rings,
56 cm in diameter, in the crown of the tree and counting the number of rings with more
than two symptomatic leaves (yellowish spots). This technique makes these evaluations an
expensive, time-consuming, and labour-intensive task.

Remote sensing, specifically proximal sensing, can provide an effective alternative
in pest monitoring [16,17]. The use of proximal sensors has advantages over manual
methods because it allows the vegetation conditions to be inferred in a suitable, faster,
and more agile way, while it is also a non-invasive and non-destructive technique. Some
studies have been carried out in other non-citrus crops for the detection of T. urticae using a
spectrometer. Martin and Latheef [18] used a ground-based multispectral optical sensor as
a remote sensing tool to evaluate foliar damage caused by this pest on greenhouse-grown
cotton, and they distinguished various levels of infestation at the beginning of the season.
Herrmann et al. [19] used multispectral images of pepper leaves in a greenhouse to calculate
vegetation indices, which allowed the early detection of damage caused by this pest. In
lab-based strawberry leaves, Fraulo et al. [20] employed diffuse reflectance spectroscopy in
the visible and near-infrared portions of the spectrum to identify spectral regions altered
by the presence of T. urticae. Crockett et al. [21] used spectroscopy and visible and near
infrared (VNIR) imaging on the leaves of different strawberry cultivars to characterise the
reflectance patterns of the damage, which revealed the existence of differences in varietal
susceptibility. In spectral methods based on cameras, Nieuwenhuizen et al. [22] studied
the images obtained by an RGB camera and three multispectral cameras to detect red
spider mite damage in greenhouse tomato leaves; the results showed discriminant spectral
bands between healthy and damaged leaves. Moreover, Uygun et al. [23] developed an
innovative image processing technique to determine the level of damage in greenhouse
cucumber plants infected by this pest.

Red spider mite causes discolouration and desiccation when they feed the leaf, which,
in most cases, results in yellowish spots and/or bulges in the upper side of the leaves [24].
The larva of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) feeds on the leaf in
the area between the parenchyma and the cuticle. It traces a winding gallery that grows as
the larva grows. The cuticle of the affected leaves breaks, causing water loss in the cells;
consequently, the leaf coils dry and break [24]. Nutritional deficiencies in citrus leaves,
when severe, are also manifested in symptoms that can be recognised visually [25]. Some
symptoms can be similar in colour to the chlorotic spots caused by T. urticae. Nitrogen
deficiency occurs in old leaves first and causes a significant yellowing in the veins. In
contrast, iron deficiency occurs in recent leaves and produces a loss of their deep green
colour that evolves into shades ranging from light green to pale yellow, depending on
the intensity of the condition. However, the veins of the leaves characteristically remain
dark green and appear marked on a lighter background, resembling a kind of mesh or
lattice [26]. Manganese deficiency leads to chlorosis in the interveinal tissue of the leaves,
but the veins remain dark green. Sometimes, Mn deficiency can be confused with Fe and Zn
deficiency. Recent leaves usually show a reticulate pattern on a lighter green background
that is less marked than in Zn or Fe deficiencies. The pattern becomes a green band along
the midrib and the principal lateral veins in mature leaves, with light green areas between
the veins [27].

Leaf characteristics can be linked to spectral features statistically. In hyperspectral
remote sensing, spectral data are typically high-dimensional, fine spectral bands that
are highly correlated with each other [28]. Hyperspectral imaging generates a massive
amount of redundant and frequently highly correlated data that needs to be processed [29].
This fact may lead to multicollinearity problems and overfitting when using conventional
multivariate regression for empirical modelling [30,31]. To handle such a large amount
of data and extract useful information, computational statistical methods are needed.
These methods connect original variables with the essential spectral information to classify
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and/or quantify important characteristics [32,33]. Partial Least Squares (PLS) is one of the
most popular methods for constructing predictive models. This method is commonly used
in hyperspectral imaging to extract and summarise spectral information from hyperspectral
images, reduce the high dimensionality of the spectral data, and overcome the problem of
multicollinearity [34]. PLS discriminant analysis (PLS-DA) is a variant of PLS regression
in which the independent variable is categorical, expressing the class membership of
the samples. It is performed to sharpen the separation between groups by maximising
the covariance between the spectra and the independent variable, so that a maximum
separation among classes is obtained.

This work aims to investigate the potential use of both colour and hyperspectral
imaging as a practical tool to detect the presence and the age of the damage caused by T.
urticae in tangerine leaves. Another goal is to discriminate this damage from that caused
by other pests and from nutritional deficiencies.

2. Materials and Methods
2.1. Leaf Samples

A total of 142 tangerine (cv.‘Clemenules’) leaves were collected from two commercial
orchards located in El Puig de Santa María and Chiva (Valencia, Spain) in September 2019.
After collecting the leaves, they were stored in a cool chamber at 5 ◦C. The selection of the
leaves was established as follows (Table 1).

Table 1. Classification of the sets and subsets of the leaves for analysis.

Name of the Set Name of the Subset Leaves Symptom Age

G1
G1.1 30 Healthy Recent
G1.2 30 Healthy Mature

G2
G2.1 30 Tetranychus urticae Recent
G2.2 30 Tetranychus urticae Mature

G3 G3.1 10 Phyllocnistis citrella Recent and mature

G4
G4.1 6 N deficiency Recent and mature
G4.2 6 Fe, Mn, or Zn deficiency Recent and mature

Sixty leaves with visible damage caused by T. urticae and 60 leaves with no external
symptoms of any damage were chosen to evaluate the ability of an automated system to
detect the presence of damage caused by this pest in the leaves. Since recent damage occurs
typically in recent leaves [24], to determine whether the damage corresponded to an active
pest or an old one, half of the selected leaves, with damage or without, were recent, while
the other half were old.

Twenty-two leaves were selected to test the ability to discriminate between T. urticae
and other problems, 10 of which were affected by P. citrella and the remaining 12 were
affected by various nutritional deficiencies whose aspect was compatible with N (6 leaves)
and Fe, Mn, or Zn deficiencies (6 leaves) [35]. These leaves presented a discoloured appear-
ance similar to the damage caused by T. urticae but with different geometrical patterns.

Another 20 leaves were selected, 10 with T. urticae damage and 10 with various
deficiencies, to determine the geometric characteristics of the patterns caused by the
damage and the deficiencies in the leaves and to tune the algorithm used to process the
colour images.

The damage observed in the leaves had well-defined characteristics, such as colour
and shape, which made it possible to draw a visual distinction among them. Figure 1
shows images of the leaf samples on both sides for each subset.
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Figure 1. Images of the leaves (upper and underside of the leaf) for each subset.

2.2. Detection of T. urticae Damage Using Colour Imaging
2.2.1. Colour Image Acquisition and Segmentation

Colour images with a resolution of 0.03 mm/pixel were captured using a digital
camera (EOS 700D, Canon Inc, Tokio, Japan) arranged inside a square inspection chamber
that included a calibrated and uniform illumination system composed of eight fluorescent
tubes (BIOLUX 18 W/965, 6500 K, Osram GmbH, Germany). The angle between the lens
axis and the illumination sources was approximately 45◦ [36], and cross-polarisation was
used [37] to avoid direct reflections towards the camera. Images were captured on the day
after leaf collection, and the samples were kept at room temperature (22–25 ◦C) for 30 min
before acquiring the images. Images of the leaves were captured from both the upper side
and the underside over a uniform white background.

The images were processed using customised software developed by our group at
IVIA (FooColor-Inspector v4.0, available at http://www.cofilab.com). The processing
consisted in performing an image segmentation based on colour features. However, the
damage caused by T. urticae and the colour changes caused by the nutritional deficiencies
cannot be differentiated by using the colour feature alone. Thus, a second step was carried
out to classify the leaves according to some geometric features of the objects found, as
the two types of damage have a very different appearance. Moreover, using only colour
information, it is impossible to determine whether the damage caused by T. urticae is new
or old, and therefore, the sets G2.1 and G.2.2 were joined together to form group G2.

In the segmentation based on colour features, four classes were predefined as follows:
background, green area (which corresponds to the healthy part of the leaf), yellow area
(which corresponds to T. urticae or deficiency spots), and brown area (which corresponds
to P. citrella spots). Prior to the segmentation, a supervised training process was necessary.
For this purpose, another set of 20 leaves, different from those described in Table 1, was
used. The training consisted in manually selecting representative regions of interest (ROI)
belonging to the predefined classes in the leaves used for this purpose. The colour values
(RGB) of the pixels in each region were stored together with the class to which they belonged
These values were later used as input to build a Bayesian linear discriminant analysis
(LDA) [38]. This type of LDA relies on the Bayes theorem shown in the Equation (1):

P(x|wi) =
p(x|wi)P(wi)

∑m
j=1 p(x

∣∣∣wj)P
(
wj

) , i = 1, . . . , m (1)

http://www.cofilab.com
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where x was the three-dimensional observed vector (in our case, the average RGB values of
an object), wi (i = 1, . . . ,m) was one of the m different classes, m was the number of classes,
P(x|wi) was the probability that the observed x belonged to class wi, P(wi) was the a priori
probability of an object belonging to class wi (this probability was considered to be the
same for each class), and p(x|wi) was the conditional density function of the RGB values in
class wi.

The technique used for image segmentation was pixels-wise. Therefore, for each pixel
in the image, the probability of belonging to each class was estimated, assigning the pixel
to the class with the highest probability. After segmentation, all pixels found in the image
were classified based on the predefined classes.

2.2.2. Definition of the Discrimination Parameters

As stated, the colour of the damage caused by the deficiencies and by T. urticae is
similar. Therefore, the segmentation process could not separate them into different classes.
However, the appearance and geometrical pattern of the damage were completely different.
For these reasons, the decision was made to analyse some geometrical properties of the
objects initially classified as T. urticae. In the analysis, a distinction was drawn between
these objects from leaves damaged by T. urticae and leaves damaged by deficiencies. The
purpose of this analysis was to determine the discriminative properties for identifying
T. urticae damage, not the detection or identification of deficiencies. Taking into account
that damage caused by T. urticae is generally detected as objects with an approximately
round shape, the geometrical properties considered for the analysis were [39]:

• The number of damaged areas detected per leaf.
• The total damaged area (mm2) of the leaf, as the sum of the areas of all the objects found.
• The area (A), roundness (R), compactness (C), perimeter (P), and elongation (E) of

each object found in the leaf.

Each of these properties was analysed through an analysis of variance (ANOVA) to
know whether there were significant differences between those corresponding to the dam-
age actually caused by T. urticae and the discolourations due to deficiencies. Discriminative
properties were included in the discrimination algorithm to separate between T. urticae
and deficiencies.

2.3. Detection of T. urticae Damage Using Hyperspectral Imaging
2.3.1. Hyperspectral Image Acquisition

The hyperspectral imaging system was composed of a camera (CoolSNAP ES, Photo-
metrics, Tucson, AZ, USA) and a liquid crystal tuneable filter (Varispec NIR-07, Cambridge
Research & Instrumentation, Inc., Hopkinton, MA, USA) that allowed images to be cap-
tured in the operating spectral range from 450 to 1000 nm. The camera was configured to
acquire images with a size of 1392 × 1040 pixels and a spatial resolution of 0.14 mm/pixel.
A total of 56 monochrome images were acquired for each side of the leaf in 10-nm intervals.
To optimise the dynamic range of the camera, prevent saturated images, and correct the
spectral sensitivity of the different elements of the system, a calibration of the integration
time was performed for each band. This consisted in setting the individual integration
time for each band required to obtain 90% of the reflectance of a white target reference
(Spectralon 99%, Labsphere, Inc., NH, USA).

The scene was illuminated by twelve halogen spotlights (37 W) (Eurostar IR Halogen
MR16. Ushio America, Inc., CA, USA) powered by direct current (12 V). The lamps
were arranged equidistant from each other inside a hemispherical aluminium diffuser to
illuminate the samples indirectly. Two images per leaf (upper and underside of the leaf)
were acquired in reflectance mode using customised software developed at IVIA (Figure 2).
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The reflectance captured was corrected to obtain the relative reflectance using a dark and
the white reference through Equation (2) [40]:

ρxy(x, y, λ) =
Rabs

Rabs
white

= ρRe f (λ)
R(x, y, λ)− Rblack(x, y, λ)

Rwhite(x, y, λ)− Rblack(x, y, λ)
(2)

where ρRef (λ) is the standard reflectance of the white reference target (99% in this work),
R (x, y, λ) is the reflectance of the fruit captured by the CCD sensor of the camera in the
pixel located at (x, y) coordinates, Rwhite (x, y, λ) is the reflectance captured by the CCD of
the white reference target, and Rblack (x, y, λ) is the reflectance captured by the CCD while
avoiding any light source so as to be able to quantify the electronic noise of the CCD.

Figure 2. Images captured at 650 nm and colour of the two sides of a leaf affected by T. urticae.

Therefore, a tagged database of 204 hyperspectral images was obtained (Table 2).
Three ROIs with a size of 10 × 10 pixels were selected for each side of the leaf for the case
of healthy leaves (G1), the leaves with P. citrella (G3), and the leaves with deficiencies (G4).
In the leaves affected by T. urticae (G2), three ROIs were selected from the damaged area
and another three were selected from the asymptomatic area for each side of the leaf. Thus,
a total of 972 ROIs were obtained from both sides. These ROIs were considered to be the
samples for the analysis.

Table 2. Classification of the tagged database for analysis.

Subset Leaves Number of Hyperspectral Images
(Both Sides of the Leaf) Total Number of ROI

G1.1 10 20 60
G1.2 10 20 60
G2.1 30 60 360
G2.2 30 60 360
G3.1 10 20 60
G4.1 6 12 36
G4.2 6 12 36

TOTAL 102 204 972
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The average reflectance spectrum of all pixels in each ROI was extracted and organised
in a table with 56 columns corresponding to the reflectance value of each band and the class
to which they belong. The use of adequate object features leads to more stable classification
models, as the mean spectrum decreases the amount of data [41]. This approach prevents
classification by pixels when objects from different classes contain many similar pixels and
are easily wrongly assigned to the opposite class.

2.3.2. Multivariate Data Analysis

Three experiments were planned. The first one was conducted in order to know the
ability of a model to discriminate between areas that are healthy and those damaged by
T. urticae. Sets G1 and G2 were included in this experiment. The aim of the second experi-
ment was to assess the ability of the model to discriminate between new and old damage,
and therefore, subsets G2.1 and G2.2 were included. The third experiment explored the
capability of the model to discriminate between T. urticae damage and damage caused by
other problems in the leaves. Therefore, all the sets were used to build the models.

To perform the multivariate analysis, PLS-DA was used. In PLS-DA, the regression
results are values of Y close to the values assigned to each class. In this analysis, the
independent variables (X) were the spectrum of each sample, while the dependent variable
Y was a categorical variable representing each class [42]. Thus, a numerical value was
assigned to the variable Y representing the class. For the first experiment, to detect the
damage caused by T. urticae, a value of 0 was set for damaged leaves and 1 was set for
healthy ones. In the second experiment, which was conducted to differentiate between
leaves with recent T. urticae and leaves with mature T. urticae damages, a value of 0
was assigned for recent and a value of 1 was set for mature leaves. Finally, in the third
experiment, aimed at discriminating among all the different types of damage, the response
values were set as 1, 2, 3, 4, and 5 for G1, G2, G4.1, G4.2, and G3, respectively.

In this study, the method used to reduce the huge amount of redundant and correlated
data captured by the hyperspectral systems between contiguous wavelengths [33] and to
select the optimal wavelengths was based on the vector of the regression coefficients. It
measures the association between each variable and the response and selects variables in
two steps: (i) the PLS model is fitted to the data, and (ii) the selection of variables is based
on a threshold [43]. Variables with a high absolute value can be selected because they make
the highest contribution to the classification, and those with a small absolute value can be
ignored [44]. In this work, the regression coefficients were obtained from the PLS models.

In all cases, 70% of the samples were used to train and validate the model using cross-
validation. The remaining 30% of the samples were used as an independent or prediction
test set. Results are given for the test set.

The input spectra for the PLS-DA models were normalised using mean-centring [45].
A single 10-fold Venetian blind cross-validation (i.e., splitting the data evenly into 10 sets
and leaving each of the sets out in each iteration of the validation procedure) was used
to choose the optimal number of latent variables (LVs) as well as to obtain an estimate of
the error rate of the PLS models [46]. Usually, the first latent variables explain most of the
variance in the dependent variables, and thus, the dependent variables can be modelled
by a reduced number of latent variables (LVs). In a PLS model, the explanatory power
of the model increases as the number of PLS factors or variables increases. However, the
prediction accuracy of the model may decrease with an increase in model complexity [47].
The software used to construct these PLS models was The Unscrambler X 10.4 (CAMO
Software, Oslo, Norway).

2.3.3. Model Performance Evaluation

When a regression method is used to build a classification model, one of the most
important parameters to define is the cut-off value, that is, the acceptance interval in which
a new sample is considered correctly classified in the class. Similar to [48,49], the PLS-DA
cut-off value for the discrimination of samples based on the presence of damage caused
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by T. urticae was set at 0.5. If the predicted value of a sample was less than 0.5, the sample
was classified as damaged; otherwise, it was considered healthy. Likewise, in the second
experiment to discriminate the age of the damage, those with a predicted value of 0.5 were
deemed to be recent leaves, while those with higher values were considered to be mature
leaves and hence old damage. The third experiment contained a higher number of classes,
and therefore, intervals were set for each of them. The interval [0.5–1.5] corresponded to
healthy leaves, [1.5–2.5] was set for T. urticae, [2.5–3.5] was set for N deficiency, [3.5–4.5]
was set for other deficiencies, and [4.5–5.5] was set for damage caused by P. citrella.

For all cases, the results of the PLS-DA models were expressed as a percentage of
correct classification. The precision and the predictive capacity of the PLS-DA models were
evaluated using the coefficient of determination (R2). The root mean square error between
the predicted and the measured values of the reference parameter in the test set (RMSEP)
was used for calibration, cross-validation, and prediction.

3. Results and Discussion
3.1. Detection of T. urticae Damage Using Colour Imaging
3.1.1. Discrimination Parameters

In general, the defects caused by T. urticae and those found due to other problems,
such as deficiencies, are very different (Figure 3). Although they could not be separated by
colour, the geometrical properties allowed good discrimination to be achieved. Geometric
properties were calculated for each defect found in the leaves. Furthermore, the total
number of defects per leaf and the total damaged area were added together. One-factor
analysis of variance [50] was used to know if these properties were significantly different
in these two groups and could be used to separate true T. urticae from other damaged areas
not caused by the pest. Table 3 shows that most properties were significantly different in
the two groups (high F-score, p-value < 0.005). Hence, for the sake of simplicity, the amount
of damage per leaf, the total area, and the individual area of the damage were considered in
order to classify the leaf as affected by T. urticae or not. Therefore, if the area of the objects
found, the amount of damage found in a leaf, and the total area of this damage were within
the mean plus/minus the standard deviation of those corresponding to T. urticae, the leaf
was considered to be affected by T. urticae.

Figure 3. Examples of image segmentation of leaves. (a) Leaf with symptoms compatible with N deficiencies. (b) Leaf
affected by T. urticae.
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Table 3. Analysis of variance (ANOVA) of the geometrical properties of the objects found in the test images. The objects
correspond to actual damages caused by T. urticae and nutritional deficiencies (not T. urticae).

True T. urticae Not T. urticae Statistical Parameters of
ANOVA *

Mean Typical Deviation Mean Typical Deviation F p-Value

Elongation 1.539 0.272 4.230 4.596 8.161 0.0053
Roundness 0.506 0.163 0.252 0.155 44.362 0.0000

Individual area 67,293.94 39,350.89 224,056.90 233,071.55 9.476 0.0036
Compactness 34.98 17.41 83.82 75.29 15.092 0.0002

Perimeter 3260.06 2932.77 1848.61 2928.42 5.699 0.0187
Damages per leaf 1.69 0.855 9.000 6.890 11.208 0.0032

Total damaged area 82,321.75 35,703.98 1,176,298.75 517,992.91 83.652 0.0000

* Degrees of freedom: 1, 95.

3.1.2. Detection of the Damage

Table 4 shows the classification of the damage detected for each set and subset accord-
ing to the side of the leaf. The method based on colour information correctly determined
100% of sound leaves in all cases, regardless of whether they were recent or old. The
detection of T. urticae damage was also high in all cases, reaching an overall success rate of
92.5% (91.67% with the underside and 93.33% with the upper side of the leaf). Most errors
were due to damage that went undetected, and only in two cases, in the underside of old
leaves, were they confused with damage caused by P. citrella, which was probably due to
browning caused by ageing of the T. urticae damage in the leaf. P. citrella was successfully
discriminated in 100% of cases when the underside was examined, as this pest is located
in this part of the leaves. Finally, the discrimination between damage due to deficiency
was different depending on the nutrient. N deficiency could not be correctly discriminated
as the main symptom was the lightening of the green colour, but it did not follow any
particular pattern. The system was unable to establish a valid general threshold to deter-
mine when a leaf had N deficiency or was just light green. The case of other deficiencies
performed better, but only in 50% of cases were they correctly discriminated from the
damage caused by T. urticae. However, they were separated from T. urticae in 100% of the
cases, despite the similarities in colour.

Table 4. Results of the detection of T. urticae damage on each side of the leaf using colour information.

Sets and Subsets Underside (%) Upperside (%)

G1 G2 G3 G4.1 G4.2 G1 G2 G3 G4.1 G4.2

G1 100 0 0 0 0 100 0 0 0 0
G2 5.00 91.67 3.33 0 0 6.67 93.33 0 0 0
G3 0 0 100 0 0 90.0 10.00 0 0 0

G4.1 100 0 0 0 0 83.33 0 0 16.67 0
G4.2 41.67 0 8.33 0 50.0 50.0 0 0 0 50.0

3.2. Detection of T. urticae Damage Using Hyperspectral Imaging
3.2.1. Detection of T. urticae Damage

Figure 4 shows the average reflectance spectra obtained from the upper side and the
underside of healthy and damaged regions of sets G1 and G2 according to age. Both healthy
and damaged spectra follow the typical pattern of the reflectance of healthy and stressed
plants [51]. Most differences between healthy and damaged areas were found in the visible
region due to changes in the colouration of the plants, as the damage by T. urticae causes a
chlorotic spot characterised by a yellow discolouration. This discolouration is caused by a
loss of pigments due to the effect of the pest. Leaf pigments (mainly chlorophyll, carotene,
and xanthophyll) are an essential factor in energy absorption by leaves in the 400–700 nm
region [52]. Specifically, for healthy areas, the absorption level in the 530–600 nm region was
lower, and therefore, the reflectance was higher than in the adjacent blue and red regions,
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its highest point being around 550 nm [53]. This fact is responsible for the perception of the
green colour in the leaves.

Figure 4. Mean spectra of healthy and damaged regions extracted from sets G1 (undamaged) and G2 (damaged) at each
age and on (a) under side, recent leaves; (b) upper side recent leaves; (c) under side mature leaves, and (d) upper side
mature leaves.

In contrast, the damaged regions did not show any peak around 550 nm due to
discolouration on the leaf caused by the pest. In this case, the curve extended between
the green and red regions in the visible spectrum, reaching its midpoint around 600 nm
and showing the peak in different areas of this range of the spectrum. As of 700 nm, a
transition was observed in the chlorophyll absorption zone with the progressive rise in
the spectrum value to the 740–750 nm bands. This sharp rise in the curve between the red
and the NIR region is known as red-edge. The slope and the red-edge position have been
correlated with chlorophyll concentrations, and therefore, the position and slope of the
red border also change in damaged leaves because healthy ones continue to have active
photosynthesis [54].

Two classification models were built based on supervised PLS-DA using all of the
56 wavelengths in the spectral range 450–1000 nm and using only the selected wavelengths.
Figure 5 shows the vector of regression coefficients on each side and for each age of the
leaf. Those wavelengths with the highest absolute regression coefficients were selected
as essential wavelengths. In the case of the upper side, apparent visual differences are
observed between the green of the healthy regions (530 nm) and the yellow chlorotic spots
of the damaged areas (600 nm). However, the most important wavelengths were three
identified around the red and the red-edge regions (670, 700, and 740 nm).



Agronomy 2021, 11, 1002 11 of 18

Figure 5. Vector of regression coefficients of the PLS model using mean spectra and with the optimal wavelengths selected
at each age and on (a) under side, recent leaves; (b) upper side recent leaves; (c) under side, mature leaves; and (d) upper
side mature leaves.

Variations in spectral variables (X) and categorical variables (Y) were described by
only seven LVs. This relatively small number of LVs suggests a low correlation in the
spectra of different classes but similarities in the spectra within classes. Furthermore, the
low number of LVs indicated the excellent differentiation between the classes that were
constructed. Moreover, for the use of all and the selected wavelengths, the values of RMSEP
did not show a great difference for calibration and validation, respectively, which exhibited
good agreement, thus indicating that the calibration error is a reasonable estimation of
the standard error of prediction observed in the test set. Furthermore, the test set yielded
results similar to those of the calibration set, with an R2 greater than 0.87 in all cases, thus
indicating the excellent performance of the model for the classification of damage. Indeed,
the rate of successful classification achieved was 100% for all cases. The models could
detect 100% of cases of damage by T. urticae in mature and recent leaves and on the upper
and the undersides.

3.2.2. Detection of the Age of the T. urticae Damage

In order to determine whether the damage was caused by a recent or an old infestation
of T. urticae, Figure 6 shows the mean spectral reflectance obtained from the damage
caused by this pest for each side as a function of the age of the leaf. Some differences
were observed between recent and mature leaves with damage on both sides of the leaves.
The reflectance of the damage of the mature leaves is lower than the reflectance of recent
leaves, especially in the visible part of the spectrum. This could be due to differences in
the pigmentation. A low pigmentation content results in higher reflectance and vice versa.
Therefore, in a recent leaf affected by T. urticae, the breaking down of chlorophylls causes
the presence of carotenes and xanthophyll to be more evident, thus producing a sharp
increase in the reflectance [55]. Another possible reason could be the changes in the spectral
properties of plant leaves during the growing season. The very recent folded, compact, and
underdeveloped leaves exhibit a lack of chlorophyll that increases the reflectance, while
leaves with a brown appearance diminish the near-infrared reflectance [55].
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Figure 6. Mean spectra of damaged regions caused by T. urticae on (a) under side and (b) upper side of recent and mature
leaves.

Five wavelengths were obtained from the vector of regression coefficients per under-
side and seven per upper side of the leaf (Figure 7). The spectral bands selected as essential
are mostly located behind the red-edge, the 850-nm spectral band being typical for both
sides of the leaf.

Figure 7. Vector of regression coefficients of the PLS model using mean spectra and with the optimal wavelengths selected
on (a) under side and (b) upper side of the leaf.

Table 5 shows the results obtained for PLS-DA classification according to the age of the
damage. For both models, a high percentage of damage was correctly classified according
to the age of the damage (>92% for all cases). It is noticeable that the success rate of 100%
was achieved for the underside, since it is the part of the leaf where the mite feeds and the
damage is quite apparent.

Table 5. Classification of age of T. urticae damage (%) for the validation set by PLS-DA using all and
selected wavelengths on each side of the leaf.

Latent
Variables

Class

Recent Mature

Underside
All wavelengths 7

Recent 100 0
mature 0 100

Selected
wavelengths 5

Recent 100 0
mature 0 100

Upper side
All wavelengths 7

Recent 88.89 11.11
mature 3.70 96.30

Selected
wavelengths 5

Recent 86.73 13.27
mature 1.02 98.98

For the underside, the RMSEP values obtained in the optimal wavelengths PLS model
were higher compared to the model with all wavelengths. Both showed agreement between
calibration and validation, also obtaining an R2 higher than 0.87 in all cases. On the other
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hand, the upper side of the leaf showed a very low R2 for prediction, with a value of 0.65
for the model based on all wavelengths.

3.2.3. Discrimination between T. urticae and Other Damage

The mean reflectance spectra of healthy leaves, damage by T. urticae and P. citrella, and
leaves with different deficiencies were evaluated for each side of the leaf (Figure 8).

Figure 8. Mean spectra of healthy leaves (G1), damage by T. urticae (G2) and P. citrella (G3), and leaves with N deficiency
(G4.1) and with other deficiencies (G4.2) on (a) under and (b) upper side.

In the spectral range from green to red, the differences could be observed between
the various types of damage. The set G2 (T. urticae) and the subsets G4.1 (N deficiency)
and G4.2 (damage due to other deficiencies) presented a peak at around 550–570 nm on
both sides of the leaf, but with a level of a different intensity. On the other hand, the set
G3 (P. citrella) presented a different behaviour depending on the side of the leaf, since the
gallery created by the larva during its feeding is quite visible only on one side of the leaf.

The valley in the 670–690 nm region was marked in all cases, indicating the absorption
of chlorophyll to a greater or lesser extent. In the 700 to 750 nm region, the spectrum value
increased, but not with the same level of intensity for all cases. G3 obtained low reflectance
values in the NIR for the other types of damage, which indicated that this vegetation was
quite diseased or that it had a considerable lack of humidity. In this spectral region, valleys
and peaks can be seen quite clearly in different spectral bands for each type of damage. On
both sides of the leaf, the peak at 760 nm and the valley at 770 nm are typical for damage
not caused by T. urticae. The same happened with the peak at 900 nm.

The wavelengths that made the biggest contribution to the classification were obtained
through the regression coefficients from the PLS model (Figure 9). This vector of regression
coefficients showed nine wavelengths on the underside and eleven on the upper side of
the leaf.

Figure 9. Vector of regression coefficients of the PLS model using mean spectra and with the optimal wavelengths selected
on (a) under side and (b) upper side of the leaf.
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The RMSEP values for calibration and validation in the models with the full spec-
trum and the selected wavelengths were similar. The prediction R2 for the two sides
showed values of 0.85 and 0.84 using all the wavelengths and 0.80 and 0.86 using the
selected wavelengths.

Table 6 shows the results obtained for the damage classification based on the groups
of samples. All models, using all and the optimal wavelengths, showed a low percentage
of correctly classified damage (<50%), with the lowest value for the damage caused by
other deficiencies (0% on both models on each side of the leaf).

Table 6. Damage classification according to the presence of different types of damage of the validation set by PLS-DA using
all and selected wavelengths on each side of the leaf.

Latent
Variables

Class (%)

Set G1 G2 G3 G4.1 G4.2

Underside

All wavelengths 7

G1 100 0 0 0 0
G2 0 75.93 1.85 16.67 5.56
G3 0 0 100 0 0

G4.1 0 33.33 0 66.67 0
G4.2 20 80 0 0 0

Selected
wavelengths 5

G1 100 0 0 0 0
G2 0 69.67 1.85 22.92 5.56
G3 0 0 100 0 0

G4.1 0 33.33 0 66.67 0
G4.2 0 100 0 0 0

Upper side

All wavelengths 7

G1 95.83 4.17 0 0 0
G2 0 81.48 1.85 12.96 3.70
G3 0 0 100 0 0

G4.1 0 16.67 16.67 66.67 0
G4.2 20 80 0 0 0

Selected
wavelengths 4

G1 95.83 4.17 0 0 0
G2 0 94.20 1.85 3.95 0
G3 0 0 100 0 0

G4.1 0 33.33 0 66.67 0
G4.2 0 100 0 0 0

It is worth noting the potential of the system to detect damage caused by P. citrella that
is almost invisible from the upper side of the leaves, as can be seen in
Figures 1 and 10a. Although this was not the aim of this research, which focused on
damage caused by T. urticae, this finding is relevant. P. citrella is a severe and dangerous
pest that is difficult for any automated surveillance system to detect, as the visible damage
is caused in the underside. However, using a wavelength of 770 nm, which the PLS analysis
identified as one of the most important for the problem, it was possible to see the damage
that could not be detected using the colour vision system. Figure 10a shows the comparison
between the upper side of a leaf photographed with a colour camera and in the 770 nm
band. In general, as shown in Figure 10b, the damaged area presents a lower reflectance
in the NIR region, which is in agreement with most scientific works on the reflectance of
stressed plants.
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Figure 10. (a) Comparison of the image of the upper side of a leaf captured at 700 nm with the hyperspectral camera and
the image of the same leaf captured with the colour camera. (b) Spectra of the healthy and damaged regions of this leaf.

4. Conclusions

Colour and VIS/NIR hyperspectral imaging were evaluated under laboratory condi-
tions to detect the damage caused by T. urticae and if it is recent or old. Likewise, they were
tested to determine their capacity to discriminate it from other damage, as the caused by
P. citrella, and other nutritional deficiencies on tangerine leaves.

In colour imaging, a success rate of 100% was obtained to identify leaves without
damages while the leaves with the presence of T. urticae were correctly identified in 92.5%
of cases. Most errors were caused by confusion with some deficiencies. However, this
method was not capable of discriminating between old and recent damage caused by
T. urticae.

In hyperspectral imaging, the PLS-DA model was able to separate sound from dam-
aged areas in 100% of cases. On the one hand, recent infestations were distinguished from
old ones in 92% of cases, with a 100% success rate for the underside of the leaves, as the
damage is more evident on this surface. On the other hand, the models for exploring their
capability to discriminate between T. urticae and damage caused by other problems showed
a percentage of correctly classified damage of less than 50%. More specifically, for the
discrimination of damage caused by other deficiencies versus T. urticae, it was impossible
to establish discriminatory differences.

Although it was not the objective of this research, a relevant finding has been the
potential of hyperspectral systems to detect the damage caused by P. citrella. This pest is
difficult to detect by any automatic surveillance system because the damage is hidden on
the underside of the leaves, and hence, it is difficult to see beyond a certain distance.

The results indicated the potential of colour and hyperspectral imaging to detect the
chlorotic spots caused by T. urticae in citrus leaves as fast and automatic techniques that
represent an improvement on manual methods.
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