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The recent introduction of next generation sequencing (NGS) technologies represents a
major revolution in providing new tools for identifying the genes and/or genomic intervals
controlling important traits for selection in breeding programs. In perennial fruit trees with
long generation times and large sizes of adult plants, the impact of these techniques is
even more important. High-throughput DNA sequencing technologies have provided
complete annotated sequences in many important tree species. Most of the high-
throughput genotyping platforms described are being used for studies of genetic
diversity and population structure. Dissection of complex traits became possible through
the availability of genome sequences along with phenotypic variation data, which allow
to elucidate the causative genetic differences that give rise to observed phenotypic
variation. Association mapping facilitates the association between genetic markers and
phenotype in unstructured and complex populations, identifying molecular markers for
assisted selection and breeding. Also, genomic data provide in silico identification and
characterization of genes and gene families related to important traits, enabling new
tools for molecular marker assisted selection in tree breeding. Deep sequencing of
transcriptomes is also a powerful tool for the analysis of precise expression levels
of each gene in a sample. It consists in quantifying short cDNA reads, obtained by
NGS technologies, in order to compare the entire transcriptomes between genotypes
and environmental conditions. The miRNAs are non-coding short RNAs involved in
the regulation of different physiological processes, which can be identified by high-
throughput sequencing of RNA libraries obtained by reverse transcription of purified
short RNAs, and by in silico comparison with known miRNAs from other species. All
together, NGS techniques and their applications have increased the resources for plant
breeding in tree species, closing the former gap of genetic tools between trees and
annual species.

Keywords: next generation sequencing, genome sequences, RNA-seq, association mapping, insertional mutant
populations

INTRODUCTION

Breeding of tree species is a longer and time consuming process compared to annual species.
The long generation time impairs the development of crosses until the species overcome the
juvenile period, being between 3 and 10 years depending on the species. In addition, the large
size of trees makes it difficult to obtain large numbers of individuals for segregation families, and
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precludes the management of plants under greenhouse-
controlled conditions. Some otherwise useful techniques aimed
at identifying gene variants such as ‘tilling’ and ‘ecotilling’ can
hardly be applied to trees. Consequently, breeding by molecular
marker assisted selection (“molecular breeding”) has been limited
to a reduced number of traits, mainly related to disease resistance
and traits with oligogenic control (Gessler and Pertot, 2012;
Zuriaga et al., 2013). The identification and functional analysis
of gene orthologs from model plants presents a bottleneck for
efficient transformation and regeneration protocols in many of
these species.

However, the availability of genome sequences along with
next generation sequencing (NGS) techniques may provide new
tools to overcome most of the problems faced by tree breeding.
Dissection of complex traits in many important tree species has
become possible through the availability of genome sequences
obtained by high-throughput DNA sequencing technologies
along with phenotypic variation data. Such techniques offer
shortcuts for the discovery of genes linked to selected
traits and simplify the analysis of diversity in a population.
Association mapping (AM) and genome wide association studies
(GWASs) facilitate the association between genetic markers and
phenotype in unstructured and complex populations, allowing
the identification of molecular markers for assisted selection
and breeding. Genotyping by sequencing (GBS) (Elshire et al.,
2011; Poland et al., 2012) procedures provide 1000s of markers
in a population, allowing the identification of genome regions
involved in traits of interest. Concerning forest tree species,
characterized by large genomes such as loblolly pine, eucalyptus
and oak, NGS approaches have been pivotal in providing new
releases of genome sequences and improved assemblage of
former ones. All together, the NGS techniques provide new tools
for overcoming the long breeding process of trees and increase
the breeding efficiency. In this paper we aim to review the
main molecular techniques applied recently to the discovery of
genes in tree species and how they can benefit the breeding
programs.

NEXT GENERATION SEQUENCING

Future progress in fruit tree breeding will increasingly rely on
understanding the links between specific genotypes and their
influence on phenotypes. In this regard, increased knowledge and
availability of DNA sequences for individual cultivars will provide
key information for achieving specific breeding objectives. The
recent introduction of NGS technologies (Shendure and Ji, 2008;
Metzker, 2010) represents a major revolution in providing new
tools for marking and identifying the genes and/or genomic
intervals controlling important traits for selection in breeding
programs. With the ability to cost effectively produce millions
of DNA sequence reads in a single run, these technologies pave
the way for detailed expression analyses, mutation mapping,
polymorphism discovery, studies on non-coding regions, and
other uses potentially impacting the speed at which questions can
be addressed and results can be accomplished in plant breeding
(Mardis, 2008).

Among the different NGS platforms, Roche 454 R© was the
first commercially successful next generation system in Margulies
et al. (2005). One year later, SOLiD R© was purchased by Applied
Biosystems. In 2007, Solexa released the genome analyzer (GA),
and the company was purchased by Illumina R©. In early 2010,
Illumina launched HiSeq 2000, and in the same year Ion Torrent
was bought by Life Technologies R©. These platforms employ
methodologies described in the literature (Bentley et al., 2008;
McKernan et al., 2009; Perkel, 2011).

Currently, third generation technologies are being introduced
that streamline sequencing protocols. Helicos Heliscope R©

(Thompson and Steinmann, 2010), Complete Genomics R©

(Drmanac et al., 2010), Nanopore R© (Greninger et al., 2015) and
Pacific Biosciences SMRT R© (Eid et al., 2009) have incorporated
new modifications. First, PCR is not needed before sequencing,
and secondly, the signal is captured in real time, which means
that the signal is a fluorescent (Pacbio) or electric current
(Nanopore) monitored during the enzymatic reaction of adding
nucleotides to the complementary strand. Additionally, all of
them process millions of sequence reads in parallel with very
long reads, in some cases up to 10 kb long (English et al., 2012).
These high-throughput DNA sequencing technologies require
the development of new bioinformatic tools (algorithms and
software), for storage, retrieval and analyses of huge amounts
of genome-wide sequence data. Recently, the development of
the newest OxfordTM nanopore technology has provided novel
improvements in molecular sensing such as real-time data
streaming, improved simplicity, efficiency and scalability of
workflows as well as direct analysis of the molecule of interest.
These platforms along with the new bioinformatic tools have
provided complete annotated sequences in many important
horticultural crops and related wild species in a relatively short
time. These sequences are stored in databases such as “Sequence
Read Archive” from NCBI1, PLantGDB2, Phytozome3 and
EnsemblPlants4.

Genome sequencing before 2010 was based on Sanger
technology, which needed large DNA fragments cloned in
BACs (Bacterial Artificial Chromosome). Using this technique,
Arabidopsis thaliana was the first plant to have its genome
sequenced, in 2000 by the Arabidopsis genome initiative.
Lately, important cereal species were sequenced such as rice
(Oryza sativa L., 389 Mb) in 2002 by IRGSP, corn (Zea mays
L., 2300 Mb) by Schnable et al. (2009). However, bigger
genomes such as oat (Hordeum vulgare L., 5100 Mb) and
wheat (Triticum aestivum L., 17000 Mb), with 80–90% of
repetitive sequences, were improved after NGS could be
used. The genome of important species such as tomato was
completed using NGS after preliminary approaches employing
Sanger sequencing (Tomato Genome Consortium, 2012).
Similarly, many tree species had few sequences published in
databases before the appearance of second generation sequencing
approaches.

1http://www.ncbi.nlm.nih.gov/sra
2http://www.plantgdb.org
3http://www.phytozome.net
4http://plants.ensembl.org/index.html
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Fruit tree genome assemblies have often involved a
combination of NGS and Sanger technologies. Chagne (2015)
reviewed the status of genome sequencing in temperate, tropical
and nut tree species, with high quality genome assemblies
developed mainly for diploid species. Polyploidy is a widespread
feature in fruit tree species that represents a real challenge to
obtain whole-genome assemblies. However, new molecular
and bioinformatics methods have been developed in order
to improve current genome assemblies. For instance, the
TruSeq Synthetic Long Read Sequencing technology from
Illumina (McCoy et al., 2014) has been utilized to assemble
the polyploid sugarcane genome sequence (approximately
1 Gbp) using synthetic long reads (Riaño-Pachón et al., 2016).
For this purpose, reads longer than 1.5 kbp and BLAST
hits against sequences from Viridiplantae were used for
genome assembly using the OLC approach (McCoy et al.,
2014).

The black cottonwood (Populus trichocarpa) was the first
perennial tree species with an available genome sequence,
obtained using the Sanger technology (Tuskan et al., 2006).
The first peach genome assembled (v1.0; Verde et al., 2013)
was also obtained using this technology. After the introduction
of NGS, the genome sequence of more species became
available, and some perennial tree species were included.
Table 1 summarizes the genomes available both in fruit and
in forest tree species. Former assembly of the peach genome
has been improved and recently released v2.0 using NGS
platforms5. In addition, partial sequences from cherry and
almond have been made available at the Rosaceae Genome
Database (Koepke et al., 20136). Concerning forest tree species,
characterized by large genomes such as loblolly pine, eucalyptus
and oak, the genomes have been released recently using only
NGS approaches. The sequences available are indicated in
Table 1.

Another interesting tool that combines the use of genome
sequence with identification of markers for genotyping and
identification of causal mutations is the “Genotyping by
Sequencing” technique (Elshire et al., 2011; Poland et al.,
2012). GBS utilizes barcodes for the multiplex sequencing of
genomic representations of different genotypes, allowing the
genetic mapping in a segregant population and the identification
of many SNPs. These SNPs, after a first filtering based on
quality criteria, may be utilized for SNP genotyping using
different technologies (Perkel, 2008; Edwards et al., 2014).
GBS provides a rapid and low-cost tool to genotype breeding
populations (including the two parents), allowing plant breeders
to implement GWAS, genetic linkage analysis, molecular marker
discovery, and genomic selection (GS) under a large scale of plant
breeding programs. Additionally, GBS has been shown to be a
valid tool for genomic diversity studies (Fu and Peterson, 2011).
Recently this approach was reported for quantitative trait loci
(QTL) analyses in peach and other species (Ward et al., 2013;
Bielenberg et al., 2015). Several microarrays using the InfiniumR

platform for SNP genotyping are available in different Rosaceae

5https://www.rosaceae.org/species/prunuspersica/genomev2.0.a1
6http://www.rosaceae.org

TABLE 1 | Reference genome sequences of fruit and forest tree species.

Fruit species Common names Reference

Carica papaya Papaya Ming et al., 2008

Malus domestica Apple Velasco et al., 2010

Theobroma cacao Cacao Argout et al., 2011

Fragaria vesca Strawberry Shulaev et al., 2011

Prunus mume Japanese apricot Zhang et al., 2012

Musa acuminata Banana D’Hont et al., 2012

Phoenix dactylifera Date palm Al-Mssallem et al., 2013

Pyrus bretschneideri Pear Wu et al., 2013

Prunus persica Peach Verde et al., 2013

Citrus sinensis Sweet orange Xu et al., 2013

Morus notabilis Mulberry He et al., 2013

Coffea canephora Coffee Denoeud et al., 2014

Elais guineensis and
Elais oleifera

South American oil
palm

Singh et al., 2013

Pyrus communis Pear Chagné et al., 2014

Citrus genus Orange Wu G. A.et al., 2014

Forest tree species Common names Reference

Populus trichocarpa Balck cottonwood Tuskan et al., 2006

Betula nana Dwarf birch Wang et al., 2013

Betula pendula Silver birch Birchgenome.org

Hevea brasiliensis Rubber tree Rahman et al., 2013

Picea glauca White spruce Birol et al., 2013

Picea abies Norway spruce Nystedt et al., 2013

Pinus taeda Loblolly pine Neale et al., 2014

Eucalyptus grandis Eucalytus Myburg et al., 2014

Quercus ruber Oak Plomion et al., 2016

species such as peach, apple, and cherry (Chagné et al., 2012;
Verde et al., 2012).

GENOME-WIDE GENETIC DIVERSITY
STUDIES

One of the main challenges in breeding is to access and use the
wide genetic variation present in germplasm collections and their
wild relatives. Most of the high-throughput genotyping platforms
described previously are being used for studies on diversity and
population structure.

Genome-wide surveys of genetic diversity are useful to
elucidate the causative genetic differences that give rise to
observed phenotypic variation, providing a foundation for
dissecting complex traits through genome-wide association
studies. The use of genome and transcriptome sequencing
for SNP discovery has resulted in large SNPs collections in
most crops. In diversity studies, the availability of sequences
allows the identification of polymorphism rates for individual
SNP markers, assisting in the selection of those SNPs with
biological meaning and those that are highly polymorphic
between groups and populations. The detected polymorphisms
facilitate the identification of mutations related to phenotypic
variation enabling a better knowledge and wider use of the
diversity in breeding.
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Affymetrix chips have been applied to the identification of
mutations related to phenotypic variation (Hill et al., 2013).
Large collections of SNPs are being validated and applied for
different purposes such as map construction, map saturation,
genome-wide diversity studies, and AM analyses.

In the frame of the International Peach SNP Consortium
(IPSC), an Illumina II 9K SNP chip was specifically designed
(Verde et al., 2012) and used for genotyping of variety collections
of peach, cherry and almond (Romeu et al., 2014; Sánchez et al.,
2014). The RosBREED SNP Consortium (IRSC) developed a
9K chip based on Illumina technology aimed at studying the
allelic diversity of Malus for breeding purposes (Chagné et al.,
2012).

In fruit species, the most commonly used markers for
diversity studies are still simple sequence repeats (SSRs) or
microsatellites. The first SSR studies in Rosaceae focused on
different species from the genus Prunus (Dirlewanger et al.,
2002; Hormaza, 2002; Aranzana et al., 2003), Malus (Silfverberg-
Dilworth et al., 2006), and Pyrus (Yamamoto et al., 2002). Several
local germplasm collections from temperate fruits have been
studied (Bouhadida et al., 2011; Pina et al., 2014). However,
in many crops progress in breeding relies on increasing the
genetic variability available. Many studies of diversity are focused
on the evaluation of genetic introgression from wild relatives.
For instance, Richards et al. (2009) studied 20 populations of
Malus sieversii prospected in China, concluding that diversity
within each population was higher than among populations,
which leads to the conclusion that this species represents a
valuable source of diversity for apple breeding. In Prunus
genus, introgressions from wild relatives resulted in gain for
the commercial varieties, mainly concerning pathogen resistance
(Quilot et al., 2004; Esmenjaud and Dirlewanger, 2007; Marandel
et al., 2009). Other studies have focused on wild relatives
from almond and apricot as a source of diversity (He et al.,
2007; Zeinalabedini et al., 2008; Gross et al., 2012; Fernández
i Martí et al., 2014). Increase in variability via wild relatives
has been explored in other genera with relevant economic
impacts such as Citrus (Barkley et al., 2006), and Olea (Belaj
et al., 2010; Fernández i Martí et al., 2015a). Germplasm
resources from underutilized fruits have been carried out in
Eriobotrya (Gisbert et al., 2009) and Diospyrus (Naval et al.,
2010).

SSRs from EST libraries were proven to be useful for
genotyping diversity in fruit genera such as Citrus (Luro et al.,
2008), Malus (Gasic et al., 2009), and Prunus (Lazzari et al., 2008).
Additionally, partial sequences of chloroplast DNA have been
used for establishing phylogenetic relationships among species of
different genera of fruit crops (Bausher et al., 2006; Bielsa et al.,
2014).

Although SSRs are still useful markers, the trend is to
develop and use SNPs. As genome sequences become available,
the collection of Affymetrix chips provides large numbers of
SNPs as unique markers that allow accurate identification of
differences among genotypes affording many applications in
genetic diversity studies, such as measuring levels of introgression
among populations and targeting of specific genes and their
evolution.

GENOME-WIDE SEQUENCES FOR GENE
MINING

Among other applications, genomic data have been used for the
in silico identification and characterization of genes and gene
families related to important traits, thus enabling new tools for
molecular marker assisted selection and plant breeding. Many
gene families have been identified using this approach, among
which are numerous transcription factor families. As an example,
in PrunusmumeMADS-box genes encoding transcription factors
involved in crucial roles in plant development, especially in
flower and fruit development were identified (Xu et al., 2014).
In Malus x domestica the expansin gene family included 41
genes putatively related to cell-wall-loosening processes required
for cell expansion and fruit softening (Zhang S.et al., 2014).
The Golden Delicious apple genome was similarly mined for
lipoxygenase LOX genes coding for enzymes that catalyze the
dioxygenation of polyunsaturated fatty acids. In this study
MdLOX1a and MdLOX5e were identified as candidate genes for
fruit aroma volatile production in apple, based on expression and
genetic evidences (Vogt et al., 2013). Mining the draft genome
of papaya served to study the structure of different gene families
in this species lacking recent genome-wide duplications, to
accelerate the construction of physical maps of sex chromosomes
and to identify a gene controlling fruit flesh color (Ming
et al., 2012). The causative allele br, named broomy for pillar
appearance phenotype, located previously in the linkage group 2
of the peach genetic map has been recently identified in the same
region using NGS (Dardick et al., 2013). This gene, ppa010082, is
an ortholog of the rice gene TILLER ANGLE CONTROL1 (TAC1)
(Yu et al., 2007).

RE-SEQUENCING GENOMES

With advancements in NGS technology, whole genome re-
sequencing is currently the most rapid and effective method
to unravel, at the genomic level, the underlying mechanisms
of species origin, development, growth, and evolution. Material
from wild relatives, ancestors, landraces held in germplasm
collections and modern cultivars of crop species will offer a useful
gene pool to cope with existing and new breeding challenges. The
main applications of genome re-sequencing include detection of
genetic differences between variants, transposon fingerprinting
for assessing germplasm diversity and lineages, and mapping loci
associated with specific traits, such as disease resistance, fruit
quality or other important agronomical traits.

To date, re-sequencing initiatives have been launched for
several species including 100s of cultivars, such as the “150
Tomato Genome ReSequencing project” or “Resequencing
302 wild and cultivated accessions identifies genes related to
domestication and improvement in soybean.” In the latter case,
researchers were able to identify almost 10,000 new SNPs and
876,799 indels. In addition, the depth of sequencing data allowed
them to identify a total of 1,614 copy number variations (CNVs)
and 6,388 segmental deletions comprising 15.14 and 73.6 Mb
sequences, respectively (Zhou et al., 2015). On the other hand,
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the 150 Tomato Genome Re-sequencing project aims to explore
the genetic variation available in old breeding tomato stocks and
wild tomato relatives (Aflitos et al., 2014).

Whole genome re-sequencing has been applied to most of
sequenced tree genomes. In Populus, linkage disequilibrium
studies based on genome re-sequencing suggested the feasibility
of genome-wide association studies in undomesticated
populations (Slavov et al., 2012). Moreover it was used to
elucidate the origin of cultivated mandarin and orange trees,
formed by interspecific introgressions of Citrus maxima into
ancestral mandarin species (Wu G. A.et al., 2014). Pooled
re-sequencing of 240 Eucalyptus genomes served to develop
a 60K SNP chip suitable for different Eucalyptus tree species
(Silva-Junior et al., 2015).

Thus, re-sequencing the genomes from multiple individuals
provides an important improvement over the SNP identification
procedure. The development of more comprehensive SNP and
molecular marker databases will offer an extensive number of
genotype markers that can be used in whole-genome linkage
disequilibrium (WGLD) and candidate gene association studies
(Jackson et al., 2006).

GENOME-WIDE TOOLS FOR FINE
MAPPING AND DISSECTION OF TRAITS

In mapping populations, where major QTLs linked to target traits
are described, resequencing individual genomes with extreme
phenotypes followed by alignment of short reads against the
reference genome facilitates the identification of polymorphisms
associated with such traits. Using this procedure Zhebentyayeva
et al. (2014) identified two dormancy associated genes PpeDAM5
and PpeDAM6 as strong candidates for chilling requirement
and bud dormancy release in peach. Pirona et al. (2013) used
two segregating populations and the Illumina 9K SNP array to
redefine the map position of the fruit maturity date (MD) locus
of peach. A sequence variant in the NAC gene ppa008301m co-
segregated with the MD locus, suggesting this gene as a candidate
for controlling fruit ripening time in peach. Vendramin et al.
(2014) used a linkage map from a F2 peach progeny to map the
nectarine locus in a 635 kb interval. The subsequent inspection
of the genes annotated in the peach genome sequence (Peach
v1.0) led to the identification of the MYB gene PpeMYB25 as
a candidate gene for trichome formation on fruit. In addition,
three independent mutations in a single gene coding for a
putative carotenoid cleavage dioxygenase (PpCCD4) were found
associated with the yellow flesh trait in peach, after analyzing 37
varieties including ancestral relatives (Falchi et al., 2013).

In apple, the Co gene responsible for the columnar growth
habit phenotype was fine mapped in a 200-kb region of the
linkage group 10 (Bai et al., 2012; Moriya et al., 2012). Evidence
from high throughput genomic sequencing of the ‘Wijcik’ mutant
columnar habit and its wild-type ‘McIntosh’ with standard habit
pointed to a 1956 bp insertion of a mobile DNA element
as the likely origin of Co mutation (Wolters et al., 2013;
Otto et al., 2014). The insertion was located in an intergenic
region, but strongly affected the expression of a 2OG-Fe(II)

oxygenase gene named MdCo31. The involvement of MdCo31
in the columnar growth habit was functionally confirmed by
the replication of a Co-like phenotype in Arabidopsis thaliana
expressing constitutively this gene (Wolters et al., 2013).

In the Caucasian persimmon (Diospyros lotus), a conserved
small RNA-dependent mechanism was found to determine sex in
this dioecious plant, after high throughput genomic sequencing
of sex-segregant pools of F1 plants (Akagi et al., 2014).

As an alternative to analyses in controlled crosses, AM in
unstructured and complex populations is now being largely
applied to many crops. Genetic resources consist of a large
number of accessions with different histories, mutations, and
recombination events and may represent a large reservoir
of phenotypic and molecular diversity. The AM strategy
has been proposed to identify polymorphisms involved in
phenotypic variations and may be useful in identifying interesting
alleles/traits for breeding purposes. This approach relies on the
strength of association between genetic markers and phenotype.
Thus, it detects and locates genes relative to an existing map
of genetic markers (Mackay and Powell, 2007). AM has been
successfully applied in mapping genes involved in several traits in
different plant species (maize, sunflower, lettuce, potato, tomato,
wheat, etc.), but only a few studies have been carried out in
fruit tree crops, such as peach (Font i Forcada et al., 2013;
Micheletti et al., 2015), apple (Cevik et al., 2010), pear (Oraguzie
et al., 2010), almond (Font i Forcada et al., 2015a,b), and apricot
(Mariette et al., 2016). In almond, these studies have been able
to detect the genomic regions where candidate genes involved
in the accumulation of important compounds for fruit quality
such as tocopherol and phytosterol are located, using the peach
reference genome. In apricot, the implementation of GWASs
for Plum Pox virus (PPV) resistance utilizing NGS platforms
to genotype a broad spectrum of the available apricot breeding
germplasm verified a previously described single family QTL and
specific candidate genes. Thus, demonstrating the utility of the
combined approaches of both single family QTL and GWAS
studies (Mariette et al., 2016).

INSERTIONAL MUTANT POPULATIONS

Collections of insertional mutants by T-DNA and transposon
tagging have become a powerful tool for functional genomics in
model plant species. In Arabidopsis thaliana, high-throughput
procedures for plant transformation, insertion-site recovery
and DNA sequencing allowed the generation of libraries of
indexed T-DNA insertions at the beginning of the century
(Alonso et al., 2003). They have taken advantage of sequence
tagging of target genes for functional gene characterization
by direct and reverse genetics approaches, providing a vast
amount of information in databases and the literature. The
analyses of mutant populations provide direct functional links
between genes and phenotypes, help to integrate in silico
analysis of gene and protein expression, and facilitate the
association studies of natural genetic polymorphism and the
phenotypic analysis of adaptation to environment. However
some mutagenesis approaches cannot be applied to trees because
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of their outcrossing breeding systems, high heterozygosity, large
body size, and long juvenile period. In contrast, gene-tagging
approaches that use insertional mutagenesis to create dominant
phenotypes are ideally suited for trees. The availability of
poplar genome sequence allowed the first project of insertional
mutations in a perennial tree species, using T-DNA activation
tagging as a source of dominant and semidominant mutations
(Busov et al., 2003, 2005). A dwarf poplar mutant was
identified among a collection of 627 independent activation-
tagged lines which contained a hyperactivated GA2-oxidase
gene, leading to altered specific gibberellin contents (Busov
et al., 2003). Tree stature is considered an interesting trait for
breeders with potential impact on wood and fruit production
and management costs. In perennial trees these studies are
preliminary; however, in species with efficient transformation
and regeneration protocols they may be combined with NGS
technologies to constitute a valuable resource for functional
genomics and breeding.

DEEP SEQUENCING OF
TRANSCRIPTOMES: RNA-SEQ

RNA sequencing (RNA-seq) is a powerful tool for the analysis
of transcriptomes due to the precise measurement of the
expression level of each gene in a sample by quantifying
short cDNA reads obtained by NGS technologies, allowing
the comparison of entire transcriptomes between genotypes
and conditions (Wang et al., 2009; Martin and Wang, 2011).
RNA reads may be mapped on a reference genome or simply
aligned and assembled when a sequenced genome is not
available, which makes this approach suitable for any plant
species.

In fruit trees, the study of transcriptomes has been widely
used for characterizing pathogen infection and resistance
pathways. Rodamilans et al. (2014) analyzed the hypersensitive
response of plum to PPV infection. Rubio et al. (2015)
evaluated the transcriptomic changes on peach leaves infected
by PPV aimed at studying the plant defense response.
Socquet-Juglard et al. (2013) identified genes involved in
the defense response to Xanthomonas arboricola in peach.
In these and many other studies, genes involved in cell
wall metabolism, photosynthesis, hormone signaling, and
plant defense mechanisms were found differentially regulated
following pathogen infection.

RNA-seq was also applied to physiological issues and
developmental transitions specific to perennial plants, such
as bud dormancy release. Zhu et al. (2015) performed the
de novo transcriptome assembly and expression profiling of
flower buds from Chinese cherry (Prunus pseudocerasus). Results
identified dormancy-associated MADS-box, AGAMOUS-like,
and APETALA3-like as genes related to bud dormancy release. Jia
et al. (2014) analyzed by RNA-seq the continuous flowering trait
in longan (Dimocarpus longan), an evergreen subtropical species.
Results identified candidate genes providing new insight into the
molecular process of regulating flowering time in woody plants.
Genes homologous to SHORT VEGETATIVE PHASE (SVP),

GIGANTEA (GI), F-BOX 1 (FKF1), and EARLY FLOWERING 4
(ELF4) were found differentially expressed in cultivars flowering
throughout the year and cultivars flowering only once in the
season.

Other tree-specific processes approached by transcriptomic
studies include wood quality traits, secondary cell wall formation
and lignin synthesis, performed mostly in Populus (Chen et al.,
2015), Eucalyptus (Thavamanikumar et al., 2014), Acacia (Wong
et al., 2011), and Tectona (Galeano et al., 2015) genera.

Among many other studies employing RNA-seq in perennial
tree species, those investigating the transcriptomic response to
water deficit (Villar et al., 2011; Cossu et al., 2014; Dong et al.,
2014; Behringer et al., 2015), oxidative stress (Lu et al., 2014),
nutrient deficiency (Fan et al., 2014) and heat shock (Chen et al.,
2014) are especially abundant and relevant under a perspective of
climate change.

CRISPR/Cas9 TECHNOLOGY

Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) protein 9 (CRISPR/Cas9)
has emerged as an alternative to classical plant breeding and
transgenic methods to improve crop plants. Until 2013, the
dominant genome editing tools were zinc finger nucleases
(ZFNs; Kim et al., 1996) and transcription activator-like
effector nucleases (TALENs, Christian et al., 2010). Recently,
CRISPR/Cas9 offered an alternative to ZFNs and TALENs
for genome editing. CRISPR/Cas9 depends on small RNA for
sequence-specific cleavage. Because only programmable RNA is
required to generate sequence specificity, CRISPR/Cas9 is easily
applicable and has developed very fast over the past year. Thus,
this technique is expected to revolutionize the field of genomics.
Based on the acumen of CRISPR/Cas system, it can be utilized
for introducing desired changes like targeted single and multiple
gene knock-outs of detrimental genes in plants (Brouns et al.,
2008) and introducing SNPs into a gene of interest (Voytas,
2013) for improvement of economic traits. Until now, it has been
successfully applied in many plant species such as Arabidopsis
thaliana (Mao et al., 2013), Oryza sativa (Shan et al., 2013),
Sorghum bicolor (Jiang et al., 2013), Solanum lycopersicum (Ito
et al., 2015), Citrus sinensis (Jia and Wang, 2014), Zea mays
(Svitashev et al., 2015), or Populus tomentosa (Fan et al., 2015).

Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated technology uses an RNA to target
the Cas9 nuclease to a particular site in the genome. Cas9
unwinds the DNA at the target site and restricts both
strands of the DNA, creating a double-stranded break. Lately,
the break can be repaired by non-homologous end joining
(NHEJ), creating a high likelihood of introducing INDELS
leading to frame shift mutations in a gene or locus of
interest (Nekrasov et al., 2013; Ran et al., 2013). NGS may
provide the sequence data required for the selection of gene
targets, and to avoid single guide RNAs (sgRNA) with a high
likelihood of off-targeting. The potential off-target sequences
have to be identified by searching the particular plant genome
database via BLASTN against the sgRNA target site within the
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genes of study. Also several software tools78 are available to
predict potential off-target mutagenesis caused by Cas9/sgRNA
effects for gene-editing tools. Only two studies in perennial
species have applied the CRISPR/Cas9 technology, one in
sweet orange (Jia and Wang, 2014), and other in Populus
tomentosa (Fan et al., 2015); however, to date there are no
studies linking NGS and CRISPR/Cas9 or showing if genetic
changes induced by Cas9/sgRNA are inherited to subsequent
generations in those species. Thus, the main applications of
this technique are targeting food quality traits, susceptibility to
pathogens or metabolomics engineering in diverting important
regulatory pathways from valuable end-products (Rani et al.,
2016).

EPIGENOMES VS. TRANSCRIPTOMES

Modulation of developmental processes by epigenetic events
involving gene expression regulation by DNA and chromatin
modifications persistent through repeated cycles of cell division
is an emerging issue in plant science. Recently, genome
wide studies of methylated DNA immunoprecipitation followed
by high-throughput sequencing (MeDIP-seq) were used to
characterize the DNA methylome of Populus trichocarpa
during in vitro culture and plant transformation methods,
in micropropagated explants, calli, and regenerated plants
(Vining et al., 2013). MeDIP-seq was also employed to
find tissue-specific features in Populus (Vining et al., 2012;
Lafon-Placette et al., 2013) and developmentally regulated
regions in leaves of Eucalyptus globulus (Hasbún et al.,
2016). On the other hand, numerous chromatin modifications
involving histone acetylation, methylation, phosphorylation,
and ubiquitination among others can be assayed by genome
wide sequencing of immunoprecipitated chromatin (ChIP-
seq). In perennial trees, ChIP-seq has been used to identify
dormancy-dependent H3K27 trimethylated regions in peach
(de la Fuente et al., 2015) and to map trimethylated H3K4
in developing xylem of Eucalyptus grandis (Hussey et al.,
2015).

Most interestingly, these works allowed a double assessment
of gene regulation by both epigenomic (MeDIP-seq, ChIP-
seq) and transcriptomic methods (RNA-seq, microarray
hybridization, in silico data), offering a multidimensional
view of the regulatory details associated with a particular
process, and confirming the conservation of chromatin effects
on the regulation of gene expression in the species under
study.

ChIP-seq has been also utilized for the identification of
binding targets of a particular transcription factor involved
in cambium development and differentiation in Populus (Liu
et al., 2015), which opens an additional way for the molecular
dissection of regulatory pathways in perennial trees.

On the other hand, a previous study carried out by Fernández
i Martí et al. (2015b) showed that methylation DNA may be the

7http://chopchop.cbu.uib.no
8http://cbi.hzau.edu.cn/crispr/

reason and origin of the self-compatible trait in almond. Further
studies are being undertaken in other fruit tree species aimed at
confirming this hypothesis.

GENOME-WIDE IDENTIFICATION OF
microRNAs

MicroRNAs (miRNAs) are non-coding short RNAs involved
in the regulation of different physiological processes through
modification of the stability of complementary target transcripts.
They can be identified by high-throughput sequencing of RNA
libraries obtained by reverse transcription of purified short
RNAs, and by in silico comparison with known miRNAs
from other species. Numerous miRNA searches have been
performed in perennial trees such as olive, persimmon, citrus,
grapevine and peach, among others. In olive, a comprehensive
study described miRNAs related to alternate bearing and
fruit development. The differential accumulation of miRNAs
under different developmental phases and tissues indicated that
control of nutrition and hormone, together with flowering
processes had a noteworthy impact on alternate bearing in
olive (Yanik et al., 2013). The miRNA profiling at different
stages of fruit development in pear allowed the identification of
factors involved in fruit development and fruit quality through
the regulation of lignin synthesis, sugar and acid metabolism
and hormone signaling pathways (Wu J.et al., 2014). In
persimmon, the identification of miRNAs involved in regulation
of proanthocyanidin biosynthesis added valuable information on
the mechanisms of natural astringency removal (Luo et al., 2015).
The comparative profiling of miRNAs between red-flesh mutant
and wild type sweet orange contributed to the identification
of miRNA-mediated molecular processes regulating lycopene
accumulation in sweet orange (Xu et al., 2010). In addition, novel
cold responsive (Zhang X.-N.et al., 2014) and early flowering
(Sun et al., 2012) microRNAs were identified in Poncirus
trifoliata. Deep sequencing has been also used to identify miRNAs
in grapevine (Pantaleo et al., 2010) and apple (Xia et al., 2012).
In peach, the analysis of miRNA accumulation served to identify
miRNA related to drought and chilling stresses (Barakat et al.,
2012; Eldem et al., 2012).

In apple the columnar apple phenotype is connected to
gene regulation by miRNAs, since transgenic apple expressing
the MdDRB1 (Double Stranded RNA Binding Protein) gene,
associated with the biogenesis of miRNA, produces a phenotype
similar to the columnar apple type of ‘Wijcik’ mutant (You et al.,
2014).

IMPACT OF NGS ON BREEDING

All the techniques described are providing new tools that
overcome most of the problems faced in tree breeding. There
are many examples of how these new tools benefit tree breeding.
To describe the current and future impact in specific breeding
programs we reviewed the impact in peach. We selected this
species because among the temperate fruit crops, peach is the
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third most important in the world after apples and pears. The
breeding activity in this species is very active; more than 100
new cultivars are released per year (Strada and Fideghelli, 2003).
Peach has a small genome and relatively short generation time,
around 3 years, becoming the model for fruit tree species.
This species summarizes both: high breeding and molecular
activity. In this section we review some examples in which
the NGS techniques have been applied in peach breeding
and how in recent years they are generating results that will
change the procedures of selection in the current breeding
programs.

The peach genome sequence was available in Verde et al.
(2013). The availability of a complete peach genome assembly
combined with data from a long history of breeding, including
several peach maps from families segregating for important traits
and sets of phenotypic data, provide new opportunities for use of
genomic and phenotypic data; all together will increase the power
of the classical breeding.

Fruit quality traits showing quantitative inheritance are
among the most important traits used in peach breeding. In
the past, they have been difficult for phenotypic screening and
needed large progenies. Martínez-García et al. (2013) built a
high-density SNP map, based on whole-genome sequencing.
They detected significant QTLs and candidate genes for quality
traits related to chilling injury. Fruit ripening or MD is an
important trait for lengthening the peach season. Fine mapping
and bioinformatic analysis of the genome sequence associated
with the MD locus allowed the identification of a sequence
variant co-segregating with the MD trait. This variant provides
potential marker-assisted breeding of new cultivars differing in
MD. Another important fruit quality trait is resistance to cold
storage, slow ripening (SR) is an interesting trait for selecting
this resistance. Whole genome analysis allowed the identification
of a deletion co-localizing with the SR trait (Nuñez-Lillo et al.,
2015). Fruit acidity is a major determinant of fruit quality in
peach. Wang et al. (2016) used genome-wide association studies
by re-sequencing 129 varieties to identify a SNP linked to the
acidity trait. Genotyping of a collection of 436 varieties served
to verify this marker, thus enabling marker assisted selection of
non-acid genotypes. The nectarine trait is due to a mutation
resulting in a glabrous phenotype. Analysis of genomic re-
sequencing data from peach/nectarine accessions pointed to
an insertion of a LTR retroelement as the likely cause of the
nectarine phenotype (Vendramin et al., 2014). Red color of
flesh is due to high anthocyanin content leading to antioxidant
properties that are attractive to consumers, and consequently
has become an interesting trait in many breeding programs.
Mapping projects combined with whole genome sequencing
identified three genes of the dihydroflavonol-4-reductase family
as good candidates for the control of this trait (Shen et al.,
2013).

Similarly to fruit quality, high-throughput sequencing helped
to dissect complex traits and to identify candidate genes for
other traits such as adaptability to chilling (Bielenberg et al.,
2015), and resistance to brown rot (Martínez-García et al., 2013),
bacterial spot (Yang et al., 2013), and PPV (Zuriaga et al.,
2013).

In all cited cases, NGS played an important role in
the identification of gene candidates and allelic variants
responsible for complex traits, allowing more efficient
screening procedures of such traits by molecular markers
developed from those allele variants and/or genes. The
information emerging is changing breeding procedures very
rapidly.

CONCLUSION

The profusion of recent NGS-based studies performed in trees,
briefly outlined in this review, firstly indicates that the old
promise of genomics to make gene approaches affordable to
many non-model species is already a matter of fact, driven
by technological and important economic improvements. In
fact, DNA sequencing cost based on calculations performed by
the National Human Genome Research Institute has decreased
from about $5,000 per raw megabase in 2001 to $0.015 in
20159. While the task to identify genes related to a given
biological process in any plant species has become easier and
cheaper, publication requirements are increasingly exigent. For
processes specific to tree species, a simple list of identified
transcripts was often considered as a sufficient contribution to the
basic knowledge of its regulation; however, currently, additional
experimental evidences are expected to support genomic data.
Thus, advanced resources are required in order to go one
step further, or to tackle issues with wider interest. Such
methodologies should optimally offer functional information
of genes identified by means of biochemical analysis, genetic
manipulation of gene expression and gene disruption or editing
using the CRISPR/Cas9 or related systems. A sustained advance
of tree science relies eventually on the use of these and other
forthcoming methodologies capable of bridging the gap with
standard model species.
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