Zoophytophagous predator-induced defences restrict accumulation of the tomato spotted wilt virus

Running title: Zoophagy restricts TSWV

Sarra Bouagga1, Alberto Urbaneja1, Laura Depalo2, Luís Rubio1 and Meritxell Pérez-Hedo1*

1Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro de Protección Vegetal y Biotecnología, (IVIA), CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
2Università di Bologna. DISTAL Department of Agricultural and Food Sciences. Viale G. Fanin 44, 940127 Bologna.

*Author for correspondence: mperezh@ivia.es

Abstract

BACKGROUND: The use of zoophytophagous predators in protected crops has been widely adopted to manage pests in Southern Europe. We hypothesized plant defence responses would be induced by zoophytophagous predators and this induction could affect plant virus occurrence; the phytophagy of these predators induces plant defences similarly to that of viral infection. Therefore, we evaluated whether or not mirid predator activated plant defences limited the accumulation of Tomato Spotted Wilt Virus (TSWV) in mechanically infected sweet pepper.

RESULTS: Our results revealed TSWV accumulation in mirid-punctured plants to be significantly lower than in intact plants; this is most likely associated with the upregulation of the JA pathway triggered by mirid phytophagy.

CONCLUSION: Activation of induced defences by mirid predators has been demonstrated for the first time to limit the accumulation of TSWV in sweet pepper. This novel approach can offer new control strategies for the management of plant diseases.

Keywords: Nesidiocoris tenuis, Macrolophus pygmaeus, Tomato spotted wilt virus, plant defences, biological control
1 INTRODUCTION

In Europe, throughout the last ten years, biological control in protected crops has been widely adopted for pest management.1–3 The case of sweet pepper and tomato in South-eastern Spain could be a paradigmatic example of how biological control based on the use of omnivorous predators has environmentally, socially and economically transformed an entire region of more than 30,000 ha of protected crops.4,5 In this short period of time the agricultural paradigm in this zone has evolved from chemical dependency to the implementation of an integrated pest management program based on the release and conservation of natural enemies; where preventive and sustainable control methods are now prioritized.3,6

In sweet pepper, (Capsicum annuum), the release of two generalist predators native to the Mediterranean region, the predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) together with the minute pirate bug Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) results in highly efficient management of the two key sweet pepper pests; the western flower thrip, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae).7–9 Moreover, recent studies with the mirid predators, Nesidiocoris tenuis (Reuter) and Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae), sustained even better biological control results in this crop since these two are also able to control aphid species.10–12 Similarly in tomatoes, the cosmopolitan predatory mirid N. tenuis enables effective control of B. tabaci and the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae),6,13,14 an important invasive tomato pest detected for the first time in Spain in 2007.15

Zoophytophagy is a special case of omnivory; predators belonging to this group use a mixture of both prey and plant resources to complete development and reproduction.16 Zoophytophagous predators can affect herbivore populations directly by preying upon them as well as indirectly through plant-mediated effects.17–27 Plant responses to herbivory feeding are known to result in a stunning array of structural, chemical, and protein-based defences designed to detect invading organisms and stop them before they are able to cause extensive damage.28–31 Zoophytophagous predators have been observed to induce both direct and indirect plant defences in sweet pepper and tomato. In sweet pepper, the phytophagy of the anthocorid O. laevigatus and the mirids N. tenuis and M. pygmaeus activated the jasmonate acid (JA) and salicylic acid (SA) signalling pathways and triggered the release of an altered blend of volatiles (green leaf volatiles, terpenoids and methyl salicylate). Those volatiles repelled B. tabaci and F. occidentalis and at the same time attracted the whitefly parasitoid,
Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae). Similar results have been obtained in tomato with the mirid predators, N. tenuis, M. pygmaeus and Dicyphus bolivari (Lindberg) [= D. maroccanus (Wagner)], yet the specific responses were attributed to each predator species in these cases. Thus, while plants punctured by N. tenuis repel B. tabaci and T. absoluta, the phytophagy of M. pygmaeus and D. bolivari did not repel B. tabaci and even attracts T. absoluta. In contrast, the feeding activity of these three mirids results in an attraction of E. formosa. Furthermore, the feeding behaviour of these zoophytophagous predators has been verified to induce direct defences through the activation of the JA pathway with an increase in protease inhibitor activity. Plants previously induced by mirids have been found to reduce the establishment and performance of important pests such as B. tabaci, F. occidentalis and the two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae) in sweet pepper, along with T. urticae in tomato. Regardless of the above mentioned studies, more investigations are needed to expand our understanding of plant mediated effects on pest and disease management induced by zoophytophagous predators. Interestingly, an important facet of research, previously not addressed but already hypothesized, is the evaluation of plant mediated effects of zoophytophagous predators on viral and microbial infection. Recently, beneficial microbes have been observed to modulate the performance of zoophytophagous predators. The colonization of tomato plants by the endophytic fungi Fusarium solani strain K reduces the capability of N. tenuis to induce necrotic rings on tomato stems and leaves. The upregulation of ethylene and JA pathways induced by F. solani give protection to tomato from N. tenuis feeding. An interaction between the pepino mosaic virus (PepMV) and the mirid M. pygmaeus has been also found. The severity of crop damage caused by M. pygmaeus is significantly enhanced when tomato plants are infected with PepMV. This interaction was attributed to the antagonistic effects of SA-mediated responses on JA-mediated responses, since PepMV infection induces the SA defence pathway meanwhile M. pygmaeus mainly activates the JA pathway. Additionally, tomato plants with high expression of methyl jasmonate are less likely to be infected with the Tomato yellow leaf curl virus (TYLCV). Therefore, we hypothesized that possible interaction can occur between induced defences by zoophytophagous predator influence the incidence of plant viruses. In this research, we focused on evaluating whether plant defences triggered separately by N. tenuis or M. pygmaeus affect the multiplication of the Tomato Spotted Wilt Virus (TSWV) in sweet pepper. TSWV is one of the most harmful plant viral pathogens, ranking second in the list of the most important plant viruses worldwide. It is transmitted in a persistent manner.
by several thrips species; with *F. occidentalis* being its main vector. Eradication or control of TSWV has become even more difficult by the emergence of resistant TSWV isolates in pepper. Herein, we evaluated the effect of plant defence activation on TSWV multiplication by quantifying TSWV RNA accumulation. Plant defence activation was confirmed by analyzing gene expression of defence pathways. The implications of these results to improve TSWV disease management in pepper are discussed.

2 MATERIAL AND METHODS

2.1 Plants, insects, and virus isolate

Sweet pepper plants (*Capsicum annuum* (Solanaceae) cv (‘Salmerón’) (California rojo, Mascarell semillas S.L, Valencia, Spain) were used in the experiments herein described. Two weeks after germination the seedlings were transplanted to plastic pots (8 × 8 × 8 cm) containing a mixture of soil with peat moss and were maintained undisturbed at 25 ± 2°C, with constant relative humidity of 65% ± 5%, and a photoperiod of 14:10 h (light: dark). Plants were irrigated twice a week. Pesticide-free sweet pepper plants were used for the experiments at 6 weeks of age (approximately 20 cm high). Fourth instar nymphs of *N. tenuis* and *M. pygmaeus* were provided directly by Koppert Biological Systems, S.L. (Águilas, Spain). *Tomato spotted wilt virus*, TSWV PVR isolate (TSWV-PVR), from the IVIA plant virus collection was used.

The virus was maintained in *Nicotiana benthamiana* Domin (Solanales: Solanaceae). Preliminary research showed that the sweet pepper cultivar used in our experiments can be successfully infected with TSWV-PVR when mechanically inoculated.

2.2 Biological assays

Three treatments were assayed: i) *N. tenuis*-punctured plants, ii) *M. pygmaeus*-punctured plants and iii) intact plants (control plants free of arthropod contact). Mirid-punctured plants were obtained by individually exposing sweet pepper plants to either 20 *N. tenuis* or 20 *M. pygmaeus* fourth instar nymphs in a 30 x 30 x 30 cm plastic cage (BugDorm-1 insect tents; MegaView Science Co., Ltd, Taichung, Taiwan). Nymphs were selected instead of adults to avoid defence induction by adult oviposition. All nymphs were removed twenty-four hours after placing them on the plants. Ten replicates per treatment were considered. Each replicate consisted of a plastic cage 60 x 60 x 60 cm (BugDorm-2; MegaView Science Co., Ltd, Taichung, Taiwan), inside which 4 pepper plants of the corresponding treatment were introduced. A total of 40 plants were used per treatment. Cages were maintained in a climate chamber at the same environmental conditions as described above (Fig. 1).
Once the experimental design was assembled, six pepper plants per treatment were removed to quantify the transcriptional response of the genes involved in defence responses. The apical region of the sweet pepper plants (the first 5 cm of the plant formed by the apical stem and young leaves) were cut and then ground in liquid nitrogen for RNA extraction. Next, the leaves of all remaining pepper plants for all three treatments (34 plants in each treatment) were mechanically inoculated with TSWV-PVR (Fig. 1). Inoculation was performed by rubbing a dilution of the following leaf extract inoculation solution (1:20, w:v) onto pepper leaves with a cotton bud and celite (diatomaceous earth). The inoculation solution was obtained by grinding 250 mg of TSWV infected N. benthamiana leaves in a mortar in a mixture containing 5 ml 0.05 M phosphate buffer, pH 7.2; 0.2% 2-mercaptoethanol; 1% polyvinylpyrrolidone (average molecular weight 10,000).

One plant per replicate and treatment was removed at 7, 14 and 21 days after inoculation (dpi), respectively, to quantify virus accumulation (n=10). As above, the apical region of each plant was excised and immediately immersed in liquid nitrogen for subsequent RNA extraction. The remaining four plants per treatment were used to visually detect the virus symptoms. In addition, a negative control treatment for the virus inoculation was also performed (mock inoculation). For this, ten plastic cages were also arranged with the same conditions as described above. Four intact pepper plants were placed inside each cage. Samples were collected at 7, 14, and 21 days post inoculation (dpi) to check and verify the absence of any contamination.

2.3 Quantification of TSWV infection by RT-qPCR

Total RNAs from 0.1 g of fresh leaf tissue from TSWV-infected and non-infected sweet pepper plants were extracted using TRIzol (Invitrogen, CA, USA) as described above. RNA concentrations were measured in duplicate with the UV-Vis spectrophotometer nanodrop (Thermo Scientific, Waltham, MA, USA) and adjusted to approximately 10 ng/µl to normalize the different extractions. Aliquots were stored at -80°C until use. RT-qPCR was carried out using the LightCycler® 480 System (Roche Molecular Systems, Inc., Switzerland), using 25 µL of a reaction mix that contained 12.5 µL LightCycler®480 Probe Master Mix (ROCHE), 4.38 µL of RNase-free water, 15 units (U) RT Multiscribe Reverse Transcriptase (Life Technologies, Rockville, MD, USA), 2 U of RNase inhibitor (Applied Biosystems, Foster City, CA, USA), 5 µM of primers 1M-F and 1M-R, 0.25 µM TaqMan® MGB probe and 5 µL of total RNA.
165(−10 ng μL−1). The Thermo cycling conditions consisted of reverse transcription at 48°C for 30
166min, incubation at 95°C for 10 min, 45 cycles of 95°C for 15 s and 60°C for 1 min.44

167

1682.4 Plant gene expression

169In a previous work, we showed how sweet pepper plants cv Lipari were activated defensively
170when exposed to adults of both *N. tenuis* and *M. pygmaeus*.26 In this work, unlike the previous
171work, the cultivar Salmeron and fourth instar nymphs of both mirid species, were used.
172Therefore, to confirm that sweet pepper plants used in this experiment were defensively
173activated, plant gene expression analysis were performed. The relative expression of three
174marker genes, commonly used as indicators of JA, SA and ABA-related defences, was
175estimated:26 (i) *PIN2* (wound-induced proteinase inhibitor II precursor) a marker gene for JA,
176(ii) *PR1* (basic PR-1 protein precursor) a marker gene for salicylic acid (SA), and (iii) *ASR1*
177(abscisic acid stress ripening protein 1) a marker gene for ABA signalling pathway. Total RNA
178(1.5 µg) was extracted using TRIzol (Invitrogen, CA, USA) according to the manufacturer’s
179instructions.23,26 The RNA was treated with a Turbo DNA-free DNase kit (Applied Biosystems)
180according to the manufacturer’s protocol to eliminate any traces of genomic DNA. cDNA was
181later synthesized using a prime script™ RT reagent kit (perfect real time) (TAKARA Bio, CA,
182USA). Real-time PCR amplifications were performed with Maxima SYBR Green qPCR Master
183Mix (Thermo Fisher Scientific, MA, USA). PCR reactions were run in duplicate, in accordance
184with manufacturer recommendations. Quantitative PCR was carried out using the LightCycler®
185480 System (Roche Molecular Systems, Inc., Switzerland), under standard amplification
186conditions.26 *EF1* (elongation factor-1) was used as a standard control gene for normalization.

1872.5 Statistical analysis

188The relative expression of defence genes was analysed using one-way analysis of variance
189(ANOVA), followed by a comparison of means (Tukey’s test) at α < 0.05. Data from RNA
190quantification of TSWV isolates were log (concentration +1) transformed prior to analysis using
191ANOVA to differentiate between treatments for each of the three post inoculation days (7, 14
192and 21 dpi), followed by comparison of means (Tukey’s test) at α < 0.05.

193

1943 RESULTS

1953.1 Plant defence by mirids restrict TSWV infection
196TSWV titer increased with time in intact sweet pepper plants; it reached a maximum at 21 dpi.
197However, it remained low and almost constant with time in both N. tenuis- and M. pygmaeus-
198punctured plants (Fig. 2). No significant differences for TSWV titer were found at day 7 nor day
19914 post inoculation ($F_{2,29} = 1.018; P = 0.3748$ and $F_{2,29} = 1.788; P = 0.1865$, respectively).
200However, at 21 dpi TSWV titer was significantly higher in intact sweet pepper plants as
201opposed to that in plants punctured with both mirids ($F_{2,29} = 36.25; P < 0.0001$). At day 21 intact
202sweet pepper plants presented chlorotic flecking on the leaves, while these symptoms were
203not observed in either of the two mirid phytophagy exposure treatments (Fig. 3). No virus
204contamination was detected in the negative control plants.

2053.2 Phytophagy of mirids alters JA pathway

206Both N. tenuis and M. pygmaeus were found to influence the upregulation of JA pathways in
207the apical part of exposed sweet pepper plants when compared to intact plants. The relative
208expression of the corresponding defence genes, PIN2 (JA pathway), significantly increased in
209mirid-punctured plants ($F_{2,17} = 7.251; P = 0.0063$; Fig. 4a) compared to intact plants. Only N.
210tenuis was able to upregulate the gene PR1 (SA pathway) ($F_{2,17} = 7.440; P = 0.0057$; Fig. 4b). In
211contrast, the ASR1 gene (ABA pathway) was not significantly upregulated in mirid-punctured
212plants when compared to intact sweet pepper plants ($F_{2,17} = 1.190; P = 0.3313$; Fig. 4c).

2134 DISCUSSION

214Two predators used extensively in biological control programs have been found, for the first
215time, to limit the accumulation of one of the most important widespread plant viruses. The RT-
216qPCR revealed that three weeks after the mechanical inoculation of TSWV, the number of RNA
217copies in mirids-punctured plants were significantly lower in comparison to intact plants.

218The production of a number of plant hormones are directly related to the process of virus
219infection; especially the JA and SA pathways. Some components of these pathways function
220as necessary signalling molecules that modulate responses to different stimuli. Exogenous
221treatments with methyl jasmonate (MeJA) or JA have been shown to reduce incidence of viral
222infection. For example, tomato plants treated with MeJA were less infected with TYLCV. The
223accumulation of Cucumber mosaic virus (CMV) in Momordica charantia L. (Cucurbitales:
224Cucurbitaceae) was significantly suppressed when plants received an exogenous application of
225JA. On the other hand, the infection process of CMV in M. charantia was almost unaffected
226by the exogenous application of SA, hence revealing how JA, not SA, inhibited virus infection.
227The activation of the JA pathway is precisely what the phytophagy of the mirids in sweet
pepper plants stimulates, which could be the explanation for the minor infection by TSWV shown in our experiments. Nevertheless, SA also plays an important role in plant defence against certain plant viruses. SA exogenous treatments have been reported to reduce the coat protein levels of *Tobacco Mosaic Virus* (TMV) and *Potato Virus X* (PVX) during their interactions with *N. benthamiana* plants. Both MeJA and Methyl salicylate (MeSA) are required for the systemic resistance response of *N. benthamiana* plants against TMV. The foliar application of MeJA at early stages of TMV infection followed by a later application of SA activated the strongest systemic defence response and upregulated the expression of defence related genes against TMV. This is also consistent with another study which showed plant resistance to a broad spectrum of RNA viruses could be improved with the application of JA and SA. Future identification of the roles of hormones in plant-virus interactions, how these hormones may interact with other biotic stressors, and cross talk among hormone pathways is still needed to fully understand the mechanisms by which plants resist infection.

Sweet pepper plants defensively activated by mirids became less attractive to *F. occidentalis*; the TSWV vector. Interestingly, TSWV infected plants are more attractive to the vector, *F. occidentalis*, than healthy plants; indeed thrips themselves develop faster on TSWV infected plants. How mirid induced plant responses influence these TSWV-thrips interactions is not known, hence further research is needed to evaluate how mirid plant puncturing can limit viral infection of TSWV transmitted by thrips. However, not only the mutualistic interactions occurring between mirids and plants but also the interactions between vectors and viruses can affect the final response of the plant. Additionally, environmental conditions, the presence of alternative food on the plant (pollen and nectar) and the presence of prey are crucial factors to be considered for further evaluation of plant mediated effects by mirids and its impact on the accumulation of TSWV in sweet pepper plants.

Current control strategies for TSWV include elimination of infected plants, use of clean stock material, exclusion of thrips with greenhouse screens or air locks, and introduction of natural enemies. As these control strategies are only partially successful, additional measures are needed to limit virus spread. Until recently, resistance to TSWV was obtained through the introgression of the two main resistance genes, *Sw5* and *Tsw*, in tomato and pepper, respectively. However, the emergence of resistant TSWV isolates (as the one used in our experiment) has limited the durability of this strategy. Therefore, breeding for durable TSWV resistance in plants is still a challenge upon which our results could provide new insight into plant viruses resistance. Probably, the activation of JA signalling pathway through genetic and chemical manipulation might improve plant defence against plant viruses.
The possible implementation of strategies based on the above mentioned hypothesis has been verified in young plants; the size which is similar to those habitually transplanted from the nursery. Previously, nursery inoculation with mirids was proposed since the activation of defence responses reduces the infestation of important pests such as the whitefly, *B. tabaci* in sweet pepper and tomato plants along with the two-spotted spider mite, *T. urticae* in tomato plants. Our results support this strategy since the plants would also be protected from diseases such as the TSWV. In this sense, sweet pepper plants can be kept defensively activated (upregulated JA pathway) up to 14 days after a single 24 h exposure to mirids. The same time period of defence activation was obtained also in *M. pygmaeus*-infested tomato plants. In zones where transplanting occurs at the end of summer there is great insect vector pressure, thus protecting young plants from viral infection is crucial. Therefore, these results promote the use of biological control which could limit viral incidence at the beginning of the cultivation period. Further research must clarify the duration of defence activation under field conditions when a part of high vector pressure, the plant is subjected to multiple infestations which could work synergistically or antagonistically with each other to activate or block the metabolic pathways responsible for defences.

Herein included is a new perspective which had not been previously considered in the use of biological control programs with zoophytophagous predators; the ability of *N. tenuis* and *M. pygmaeus* to influence the reduction of TSWV infection incidence. New research lines should explore defence response activation against other diseases such as those caused by fungi and bacteria along with how pathogenic microbes may modulate mirid performance. In conclusion, our results provide insights for future studies that can further strengthen pest and disease management programs based on these plant-predator-virus interactions.

ACKNOWLEDGMENTS

The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness MINECO (RTA2017-00073-00-00) and the Conselleria d’Agricultura, Pesca i Alimentació of the Generalitat Valenciana. MP-H was the recipient of a research fellowship from the INIA Spain (Subprogram DOC-INIACCAA). The authors profoundly thank Andrés Puchades (IVIA) for his technical assistance and Dr. Javier Calvo (KOPPERT BS, Spain) for...
supplying the insects and the two anonymous reviewers for their valuable comments on a previous version of this manuscript.

REFERENCES

Karban R and Baldwin IT, Induced Responses to Herbivory, Univ. of Chicago Press,
Chicago (1997).

Debrenczéni DE, López C, Aramburu J, Darós JA, Soler S, Galipienso L, et al., Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato
414 Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain, Arch Virol
416
417 Aramburu J, Galipienso L, Soler S, Rubio L, and López C, A severe symptom phenotype in
418 pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection
419 between resistance-breaking and non-resistance-breaking isolates of Tomato spotted
421
422 Debreczeni DE, Ruiz-Ruiz S, Aramburu J, López C, Belliure B, Galipienso L, et al.,
423 Detection, discrimination and absolute quantitation of Tomato spotted wilt virus
426
427 Thaler JS, Humphrey PT, and Whiteman NK, Evolution of jasmonate and salicylate signal
429
430 Lee WS, Fu SF, Verchoit-Lubicz J, and Carr JP, Genetic modification of alternative
431 respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance
433
435 nontransgenic approach to control plant viruses by application of salicylic acid and
437
438 Belliure B, Janssen A, Maris PC, Peters D, and Sabelis MW, Herbivore arthropods benefit
440
441 Maris PC, Joosten NN, Goldbach RW, and Peters D, Decreased preference and
442 reproduction, and increased mortality of Frankliniella occidentalis on thrips-resistant
444
447
448 Awondo SN, Fonsah EG, Riley D, and Abney M, Effectiveness of Tomato-Spotted Wilt
450
451 Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, and Rubio L, Evolutionary analysis of
452 tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus, J Gen Virol
454
455 Turina M, Kormelink R, and Resende RO, Resistance to Tospoviruses in Vegetable Crops:
457
459 Induced plant defences in biological control of arthropod pests: a double-edged sword,
Figure captions

Figure 1.

Time line presenting pepper defence activation by either *N. tenuis* or *M. pygmaeus* fourth instar nymphs, gene expression analysis, TSWV inoculation on mirid-punctured plants and intact plants, and TSWV quantification using RT-qPCR at 7, 14 and 21 days post inoculation (dpi).

Figure 2.

Quantification of *Tomato spotted wilt virus* by real time quantitative RT-PCR at 7, 14 and 21 days post inoculation (dpi) in sweet pepper plants with three treatments: I) intact plants, II) punctured by *N. tenuis*, and III) punctured by *M. pygmaeus*. Bars correspond to the mean TSWV RNA titer (Log of the number of TSWV RNA molecules) from ten plants (*n* = 10). Standard errors are represented by vertical segments. Bars with different letters are significantly different (ANOVA with Tukey’s multiple comparison test; *P* < 0.05).

Figure 3.

Symptoms of TSWV in sweet pepper leaves at 21 days post inoculation (dpi), (a) intact plants, (b) *N. tenuis*-punctured plants and (c) *M. pygmaeus*-punctured plants.

Figure 4.

Relative expression of defensive genes *PIN1* (Jasmonic acid pathway) (a), *PR1* (Salicylic acid pathway) (b) and *ASR1* (Abscisic acid pathway) (c), in the apical part of sweet pepper plants previously punctured by either *N. tenuis* or *M. pygmaeus* fourth instar nymphs, and in intact plants. Data are presented as the mean of six independent analyses of transcript expression relative to a housekeeping gene ± SE (*n* = 6). Bars with different letters are significantly different (ANOVA with Tukey’s multiple comparison test; *P* < 0.05).
Figure 1.
Figure 2.

Intact plants
N. tenuis-punctured plants
M. pygmaeus-punctured plants
Figure 3.

a)

b)

c)
Figure 4.

(a) **PIN 2**

(b) **PR 1**

(c) **ASR 1**

Legend:
- Intact plants
- *N. tenuis*-punctured plants
- *M. pygmaeus*-punctured plants