Show simple item record

dc.contributor.authorNieves-Cordones, Manuel
dc.contributor.authorGarcía-Sánchez, Francisco
dc.contributor.authorPérez-Pérez, Juan G.
dc.contributor.authorColmenero-Flores, José M.
dc.contributor.authorRubio, Francisco
dc.contributor.authorRosales, Miguel A.
dc.date.accessioned2020-02-21T11:51:30Z
dc.date.available2020-02-21T11:51:30Z
dc.date.issued2019
dc.identifier.citationNieves-Cordones, M., Garcia-Sanchez, F., Perez-Perez, J. G., Colmenero-Flores, J. M., Rubio, F., & Rosales, M. A. (2019). Coping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance. Frontiers in Plant Science, 10.
dc.identifier.issn1664-462X
dc.identifier.urihttp://hdl.handle.net/20.500.11939/6299
dc.description.abstractDrought is now recognized as the abiotic stress that causes most problems in agriculture, mainly due to the strong water demand from intensive culture and the effects of climate change, especially in arid/semi-arid areas. When plants suffer from water deficit (WD), a plethora of negative physiological alterations such as cell turgor loss, reduction of CO2 net assimilation rate, oxidative stress damage, and nutritional imbalances, among others, can lead to a decrease in the yield production and loss of commercial quality. Nutritional imbalances in plants grown under drought stress occur by decreasing water uptake and leaf transpiration, combined by alteration of nutrient uptake and long-distance transport processes. Plants try to counteract these effects by activating drought resistance mechanisms. Correct accumulation of salts and water constitutes an important portion of these mechanisms, in particular of those related to the cell osmotic adjustment and function of stomata. In recent years, molecular insights into the regulation of K+, Cl-, and water transport under drought have been gained. Therefore, this article brings an update on this topic. Moreover, agronomical practices that ameliorate drought symptoms of crops by improving nutrient homeostasis will also be presented.
dc.language.isoen
dc.titleCoping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance
dc.typearticle
dc.authorAddressInstituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km. 10’7, 46113 Moncada (Valencia), Españaes
dc.entidadIVIACentro para el Desarrollo de la Agricultura Sostenible
dc.identifier.doi10.3389/fpls.2019.01619
dc.journal.titleFrontiers In Plant Science
dc.journal.volumeNumber10
dc.page.initial1619
dc.rights.accessRightsopenAccess
dc.source.typeelectronico
dc.type.hasVersionpublishedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record