dc.contributor.author | Guimaraes, Joao E.R. | |
dc.contributor.author | De-la-Fuente, Beatriz | |
dc.contributor.author | Pérez-Gago, María B. | |
dc.contributor.author | Andradas, Cecilia | |
dc.contributor.author | Carbó, Rosario | |
dc.contributor.author | Mattiuz, Ben-Hur | |
dc.contributor.author | Palou, Lluís | |
dc.date.accessioned | 2019-05-03T11:10:21Z | |
dc.date.available | 2019-05-03T11:10:21Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Guimarães, J. E., de la Fuente, B., Pérez-Gago, M. B., Andradas, C., Carbó, R., Mattiuz, B. H., & Palou, L. (2019). Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. International Journal of Food Microbiology. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11939/6185 | |
dc.description.abstract | A large amount of GRAS (generally recognized as safe) salts and concentrations were evaluated in in vitro tests (inhibition of mycelial growth on PDA dishes) against Lasiodiplodia theobromae, the causal agent of citrus Diplodia stem-end rot. Ammonium carbonate (AC, 0.2%), potassium sorbate (PS, 2.0%), potassium carbonate (PC, 0.2%), sodium methylparaben (SMP, 0.1%), sodium ethylparaben (SEP, 0.1%), sodium benzoate (SB, 2.0%), and potassium silicate (PSi, 2.0%) were selected as the most effective. Disease control ability of edible composite coatings formulated with hydroxypropyl methylcellulose (HPMC), beeswax (BW), and these selected antifungal GRAS salts was assessed in in vivo experiments with ‘Ortanique’ mandarins and ‘Barnfield’ oranges artificially inoculated with L. theobromae. Coatings containing 2% PS, 0.1% SEP, or 2% SB were the most effective reducing disease severity (up to 50% reduction) and were also applied to non-inoculated and cold-stored ‘Barnfield’ oranges to determine their effect on postharvest fruit quality. After periods of 21 and 42 d at 5 °C followed by 7 d of shelf life at 20 °C, coatings containing SEP and SB significantly reduced weight loss and did not adversely affect the physicochemical quality attributes (firmness, soluble solid content, titratable acidity, and ethanol and acetaldehyde content) and sensory flavor with respect to uncoated control fruit. Although the internal gas concentration (CO2 level) of coated fruit increased, the coatings did not induce off-flavors. | es |
dc.language.iso | en | es |
dc.publisher | Elsevier | es |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Diplodia stem-end rot | es |
dc.subject | Nonpolluting postharvest decay control | es |
dc.title | Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit | es |
dc.type | article | es |
dc.authorAddress | Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, Km. 10,7 - 46113 Moncada (Valencia) | es |
dc.entidadIVIA | Centro de Tecnología Post-recolección | es |
dc.identifier.doi | 10.1016/j.ijfoodmicro.2019.04.008 | es |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0168160519301072#! | es |
dc.journal.issueNumber | 301 | es |
dc.journal.title | International Journal of Food Microbiology | es |
dc.page.final | 18 | es |
dc.page.initial | 9 | es |
dc.source.type | electronico | es |
dc.subject.agris | J11 Handling, transport, storage and protection of plant products | es |
dc.subject.agrovoc | Citrus | es |
dc.subject.agrovoc | Edible coatings | es |
dc.subject.agrovoc | Mandarins | es |
dc.type.hasVersion | acceptedVersion | |