Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots
Derechos de acceso
openAccessMetadatos
Mostrar el registro completo del ítemAutor
Martínez-Cuenca, Mary-Rus; Legaz, Francisco; Forner-Giner, María A.; Primo-Millo, Eduardo; Iglesias, Domingo J.Fecha
2013Cita bibliográfica
Martinez-Cuenca, M.R., Legaz, F., Forner-Giner, M.A., Primo-Millo, E., Iglesias, D.J. (2013). Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots. Journal of Plant Physiology, 170(10), 899-905.Resumen
The effect of bicarbonate ion (HCO3-) on the mobilization of iron (Fe) reserves from cotyledons to roots during early growth of citrus seedlings and its influence on the components of the iron acquisition system were studied. Monoembryonic seeds of Citrus limon (L.) were germinated "in vitro" on two iron-deprived media, supplemented or not with 10 mM HCO3- (-Fe+Bic and -Fe, respectively). After 21 d of culture, Fe concentration in seedling organs was measured, as well as gene expression and enzymatic activities. Finally, the effect of Fe resupply on the above responses was tested in the presence and absence of HCO3- (+Fe+Bic or +Fe, respectively). -Fe+Bic seedlings exhibited lower Fe concentration in shoots and roots than -Fe ones but higher in cotyledons, associated to a significative inhibition of NRAMP3 expression. HCO3- upregulated Strategy I related genes (FRO1, FRO2, HA1 and IRT1) and FC-R and H+-ATPase activities in roots of Fe-starved seedlings. PEPC1 expression and PEPCase activity were also increased. When -Fe+Bic pre-treated seedlings were transferred to Fe-containing media for 15 d, Fe content in shoots and roots increased, although to a lower extent in the +Fe+Bic medium. Consequently, the above-described root responses became markedly repressed, however, this effect was less pronounced in +Fe+Bic seedlings. In conclusion, it appears that HCO3- prevents Fe translocation from cotyledons to shoot and root, therefore reducing their Fe levels. This triggers Fe-stress responses in the root, enhancing the expression of genes related with Fe uptake and the corresponding enzymatic activities. (C) 2013 Elsevier GmbH. All rights reserved.