Show simple item record

dc.contributor.authorDiago, Maria P.
dc.contributor.authorTardaguila, Javier
dc.contributor.authorAleixos, Nuria
dc.contributor.authorMillan, Borja
dc.contributor.authorPrats-Montalbán, José M.
dc.contributor.authorCubero, Sergio
dc.contributor.authorBlasco, José
dc.date.accessioned2017-06-01T10:11:46Z
dc.date.available2017-06-01T10:11:46Z
dc.date.issued2015
dc.identifier.citationDiago, M. P., Tardaguila, J., Aleixos, N., Millan, Borja, Prats-Montalban, J.M., Cubero, Sergio, Blasco, J. (2015). Assessment of cluster yield components by image analysis. Journal of the science of food and agriculture, 95(6), 1274-1282.
dc.identifier.issn0022-5142
dc.identifier.urihttp://hdl.handle.net/20.500.11939/5136
dc.description.abstractBackground: Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Results: Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R-2 between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. Conclusion: The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. (c) 2014 Society of Chemical Industry
dc.language.isoen
dc.titleAssessment of cluster yield components by image analysis
dc.typearticle
dc.authorAddressInstituto Valenciano de Investigaciones Agrarias, Carretera CV-315, Km. 10,7 - 46113 Moncada (València)
dc.date.issuedFreeFormAPR 2015
dc.entidadIVIACentro de Agroingeniería
dc.identifier.doi10.1002/jsfa.6819
dc.journal.abbreviatedTitleJ.Sci.Food Agric.
dc.journal.issueNumber6
dc.journal.titleJournal of the science of food and agriculture
dc.journal.volumeNumber95
dc.page.final1282
dc.page.initial1274
dc.rights.accessRightsopenAccess
dc.source.typeImpreso


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record