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Abstract 
Context Maintaining a balance between semi-natu-
ral habitats and arable land is not always feasible for 
farmers. The promotion of biological control agents 
can be addressed through management at farm or field 
level, and/or by deploying lower intensity, biodiver-
sity-friendly practices which can act either directly or 
indirectly through their effect of the plant community.
Objectives We studied the effects on cereal aphids 
and their parasitoids of agricultural management 
at field and landscape levels. We tested the effect of 
organic and conventional farming, and of the within 

field characteristics, on the cereal aphid-parasitoid 
community, across a gradient of organic farming 
aggregation and of percentage of arable land.
Methods In spring 2015, we sampled aphid popula-
tions in 30 cereal fields in five agricultural areas in 
Catalonia (Spain) with contrasting levels of organic 
farming aggregation. In each field, we also assessed 
weed and crop cover. As landscape variables, we cal-
culated the Percentage of Agricultural Land (PAL) 
and the Percentage of Organically Managed Land 
(POML) in a 500-m buffer around each field. We 
sampled cereal tillers 3 m from the field edges and 
collected all aphids detected. In addition, we reared 
mummies (parasitized aphids) until they hatched.
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Results Our results show that management at land-
scape level has significant effects on parasitism rates: 
a higher proportion of surrounding fields under 
organic management increased the amount of parasit-
ism, as did less agricultural land cover. On the other 
hand, aphid populations were mainly affected by two 
in-field factors, namely, crop density and crop vari-
ety. Differences in weed communities did not seem to 
have any effects on either aphids or parasitoids.
Conclusions Rather than concentrating on the indi-
vidual management of fields, a coordinated imple-
mentation of organic farming at landscape level 
would seem to be a much better strategy for improv-
ing the biological control of aphids.

Keywords Biological control · Semi-natural 
habitats · Organic farming · Aphid-parasitoid 
interaction · Insect-plant interaction

Introduction

Farmers often plan agricultural management at field 
scale in a highly individualistic way. However, many 
studies have shown that the ecological processes that 
sustain agriculture operate at higher landscape lev-
els (Thies and Tscharntke 1999; Steffan-Dewenter 
et al. 2001; Vollhardt et al. 2010; Bianchi et al. 2013; 
Dainese et  al. 2019) and thus management practices 
could be optimized by implementation at landscape 
level (González-Díaz et al. 2012), as some models sug-
gest. One of the processes that helps sustain agricul-
tural production is biological control, which involves 
the interaction of pests and their natural enemies.

Winter cereals, which are extensively sown in 
Europe (Holland et  al. 2017), cover approximately 
21.8 million ha and in 2021 produced over 150 mil-
lion tonnes of cereals (Eurostat 2022). Aphids are 
the main arthropod pest in these crops (Vicker-
man and Wratten 1979). Apart from diverting part 
of the energy that the plants produce, aphids are 
the major vector of yellow dwarf disease, one of 
the most important viral diseases in cereal crops 
worldwide and one that causes yield losses of up 
to 80% (Duelli and Obrist 2003; Gray and Gildow 
2003; Grauby et al. 2022). Aphids live on the tillers 
of cereal plants, where adults feed and reproduce, 
and complete their life cycles in fields during the 
cropping season (Blackman and Eastop 2006). The 

characteristics of the crop, which determine feeding 
and habitat quality, influence the growth of aphid 
populations (Hasken and Poehling 1995; Duffield 
et al. 1997; Grauby et al. 2022). On the other hand, 
hymenopteran parasitoids are among the most spe-
cialized natural enemies of aphids and, at some point 
of their life cycles, depend on the resources provided 
by non-crop habitats such as alternative hosts, ref-
uges, overwintering sites (Norris and Kogan 2000; 
Bianchi et al. 2006) and nectar for adults to feed on 
during their life cycles (Bianchi and Wäckers 2008).

Although the putative effects of non-crop habitats 
in the landscape on biological control have received 
much attention in recent years, there is still much con-
troversy regarding this question. Several authors have 
found that parasitoids benefit from higher proportions 
of semi-natural habitats at landscape scale (Chaplin-
Kramer et al. 2011; Plećaš et al. 2014; Dainese et al. 
2017); by contrast, a meta-analysis summarizing data 
from 31 countries found a similar number of positive 
and negative associations between pest control and 
semi-natural habitats in the landscape (Karp et  al. 
2018). However, non-crop habitats are the component 
of the agricultural landscapes most difficult to man-
age, since farmers rarely apply a management effort 
in off-field land (Bassa et  al. 2011). Moreover, indi-
vidual farmers scattered in a mosaic landscape with 
land properties irregularly distributed as happens in 
Mediterranean countries (Napoléone and Melot 2021) 
make more difficult a management at landscape level. 
Thus, the implementation of certain management 
strategies at field level are potentially much more 
interesting, but it would imply a coordination among 
farmers in order to modulate the risk of pests in the 
landscape (Begg et al. 2017).

Low-intensity practices such as organic farming 
benefit biological diversity, and they are a more real-
istic option for implementation at landscape level 
(Cohen and Crowder 2017). Gabriel et al. (2010) found 
that the aggregation of organic farming can increase 
the diversity of certain groups of organisms, which 
suggests that differences in field management—if 
implemented at landscape level—and in surrounding 
non-crop habitats could also affect the provision of 
ecosystem services. Conversely, some effects of crop-
land characteristics such as crop diversity might only 
become visible in resource-depleted, simplified land-
scapes with little semi-natural habitat cover (Redlich 
et al. 2018; Clemente-Orta et al. 2020).
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In this study, the aim was to assess how current 
agricultural management at field and landscape levels 
affects cereal aphids and their parasitoids. The effect 
of two farming systems (organic/conventional) on the 
cereal aphid-parasitoid community was investigated 
by considering paired fields. To simultaneously test 
for the impact of the surrounding landscape scale, 
fields were selected across a complexity gradient 
characterized by the percentage of organically man-
aged land (POML) and, secondarily, by the percent-
age of annually tilled arable land (PAL).

The following two hypotheses were addressed in 
the study: (i) cereal aphids respond mainly to field 
characteristics (field management system, cereal or 
grass cover) given that they are grass specialists and 
can complete their whole life cycles on cereal crops; 
and (ii) parasitism rates will be affected by both field 
(field management system, weed cover) and land-
scape-level variables (natural habitats, organic aggre-
gation) given that parasitoids require resources that 

are present both within and outside fields to complete 
their life cycles.

Materials and methods

The study was carried out in 30 fields in five areas 
in Catalonia (NE Spain): Cabrianes (Ca), Cardona 
(Co), l’Espunyola (Es), Moià (Mo) and Gallecs (Ga) 
(Fig. 1). The set of landscapes covers an approximate 
area of 46 × 54 km (41°33′–42°03′ N, 1°36′–1°45′ E). 
Sampling sites were chosen according to their POML 
as one of the main objectives of this study to disen-
tangle the effects and relative importance of organic 
farming aggregation in the landscape. However, 
owing to the scarcity of organic farms, the choice 
was somewhat limited and only the extent of organic 
farming—rather than its distinguishing features—was 
the landscape characteristic used for the selection of 
localities. These localities lay on a gradient, with two 

Fig. 1  Study areas (circles): Cabrianes (Ca), Cardona (Co), l’Espunyola (Es), Gallecs (Ga) and Moià (Mo). Grey shading indicates 
elevation every 500 m
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localities having a low percentage of organic arable 
land and two a higher percentage. Gallecs is a par-
ticular case as, when analysed with a 500-m buffer, 
some fields had a low POML and some a somewhat 
higher POML.

In each of the first four areas (Ca, Co, Es, Mo) we 
selected four cereal fields, two organically managed 
and two conventionally managed; in Ga we selected 
14 fields, of which only three were organically man-
aged. In total, 15 of the selected fields were sown 
with barley and the other 15 with different varieties of 
wheat, including three with Khorasan wheat, triticale 
and spelt (further details in Table S1 in Supplemen-
tary information, hereafter SI).

First, we selected the organic fields that had been 
managed for over a decade following organic guide-
lines and had been certified as organic by the Cata-
lan Council for Organic Farming which means they 
use no phytosanitary products to control pests. Like-
wise, they use only organic fertilisers and implement 
diverse crop rotations including the sowing of legu-
minous crops. Each organic field was then paired with 
a control conventional field in the vicinity. Practices 
in conventional fields were representative of practices 
in many Catalan farms, where mineral fertilisers and 
synthetic phytosanitary products are employed. Phy-
tosanitary products applied during the sampling sea-
son consisted of herbicides (as it is habitual for cereal 
crops in the area, which rarely receive other bioc-
ides). This pairing approach ensured that the conven-
tional and organic plots shared similar pedo-climatic 
conditions.

Field scale

In each selected field, we established one 50-m-long 
transect, 3  m from and parallel to the field margin 
(Fig.  2). The transect was established next to unal-
tered field margins (e.g. not burned margins or mar-
gins where herbicides had been directly applied). 
Each transect was split into five 10-m-long and 
1-m-wide sections, of which alternate sections (first, 
third and fifth) were sampled six times during the 
spring.

The cereal and weed cover were estimated visu-
ally by the same trained observers along each sam-
pling segment. Crop and weed cover were recorded 
in each plot according to a ground cover scale (to the 
nearest 1% below a 10% threshold, and to the nearest 
10% above that threshold). We classified weeds into 
three functional groups following Caballero-López 
et al. (2012): grasses excluding crops, forbs and leg-
umes. Grasses can act as alternative hosts for aphids, 
while forbs and legumes can provide nectar resources 
within fields for adult parasitoids (Koricheva et  al. 
2000). The higher nitrogen content of legumes can 
attract alternative aphid hosts for parasitoids (Farooq 
et al. 2022).

In 2015 from late April to mid-June, once a week 
we collected 10 tillers as regularly distributed as pos-
sible along each segment, giving a total of 30 shoots 
per transect. Samplings were done between 09:30 and 
18:30 h under favourable weather conditions (without 
rain or strong wind). We placed the collected tillers 
carefully inside sealable plastic bags and stored them 

Fig. 2  Sampling layout of 
each of the variables used 
in the study in a 50-m-long 
transect, 3 m from and 
parallel to the field margin. 
Also shown are the three 
selected sections (A, B, C), 
each 10-m long and 1-m 
wide where aphids and 
plants were evaluated
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in a portable fridge in the field. Bags were kept at 
4 °C for at most four days until processed to reduce 
predator activity and to avoid the loss of aphids. In the 
days following each sampling session, we removed 
all aphids from the plant tillers using wet brushes. 
Aphids from each tiller were counted and classified 
by species and growth stage (nymph, adult wingless 
and adult winged) and preserved in 70% ethanol. 
Mummies were also counted, and ‘closed mummies’ 
from which parasitoids had not yet emerged were kept 
separately in individual vials, covered with a cotton 
plug, at room temperature (20–24 °C, with no humid-
ity control) until the parasitoid emerged; both the 
parasitoid imagoes and the aphid mummies were then 
preserved in 70% ethanol.

All aphids (including mummies) and hatched para-
sitoids and most hyperparasitoids were identified to 
species level if possible or otherwise to genus level. 
The aphids were identified by Nicolás Pérez Hidalgo, 
the primary parasitoids (Braconidae: Aphidiinae) by 
José M. Michelena, and the secondary parasitoids 
by Mar Ferrer Suay (Cynipoidea: Figitidae: Char-
ipinae), Emilio Guerrieri (Chalcidoidea: Encyrtidae) 
and Agnès Salat-Moltó (Chalcidoidea: Pteromalidae, 
Aphelinidae; Ceraphronoidea: Megaspilidae).

Landscape matrix

Landscape level variables (PAL, POML) were 
assessed in a 500-m buffer centred on each sampling 
transect. PAL values (mean ± SD = 74.34 ± 13.32  %; 
min = 48.02  %; max = 99.04 %) and the POML 
(mean ± SD = 23.44 ± 19.21 %; min = 0.14  %; 
max = 64.47 %). Arable farming (mainly cereal and 
legume crops) is the main land-use in these areas. 
Semi-natural field margins ranging from perennial 
grasslands to scrubland and small stands of trees were 
present in all areas (Salat-Moltó et  al. 2023). Land-
cover information was derived from the Catalan Hab-
itats cartography adapted from the Corine Biotope 
Habitats (Carreras and Diego 2004), as well as from 
existing cartography by Caballero-López and Sans 
(2010). Field management information was derived 
from information previously gathered by the research 
group (José-María et al. 2010; Rotchés-Ribalta et al. 
2015). ArcGIS (version 10.1) was used to calculate 
both parameters.

Data analysis

We summed the number of aphids and mummified 
aphids obtained in each section of each transect over 
the whole sampling period to obtain the response var-
iables of aphid abundance and parasitism. The effect 
of landscape management and field scale variables 
on aphids and parasitoids was analysed using Gener-
alised Linear Mixed Effects Models (GLMM), with 
‘field’ nested within ‘area’ as a random effect given 
that samples from the same field and from the same 
area could be spatially dependent. As fixed factors we 
tested the effects of PAL and POML as continuous 
variables, and their interaction as descriptors of land-
scape management. Farming management and crop 
variety as categorical data and plant cover (cereal, 
forb, legume and grass cover) were used as continu-
ous variables.

For the aphid abundance models, we employed a 
negative binomial distribution (with the default log-
link function) for the error term due to the overdisper-
sion observed during data exploration. For the para-
sitism rates, models included aphid abundances as an 
additional covariate since parasitism rates can be den-
sity-dependent (Pareja et  al. 2008); we used a bino-
mial distribution (with a logit-link function) that was 
appropriate for proportional data (Zuur et al. 2009).

All continuous explanatory variables were 
standardized before data analysis to avoid numeri-
cal issues and to facilitate the interpretation of the 
effects based on regression coefficients. Explana-
tory variables whose dispersion increased propor-
tionally to mean values were log-transformed prior 
to standardization. We checked for collinearity 
between continuous explanatory variables and con-
sidered them to be correlated when Spearman’s cor-
relation coefficient was greater than 0.5. We used 
the Student t-test to detect significant associations 
between our categorical and continuous explana-
tory variables. We found cereal and forb cover to 
be correlated with each other and with management 
and crop variety. Thus, we used a procedure similar 
to the one described in Zuur et  al. (2009) to avoid 
these issues: first, we subtracted the group means 
for each combination of management and crop vari-
ety (four groups in total) and then divided by the 
overall standard deviation to maintain the relative 
spread of the observations between groups. While 
this procedure guaranteed that our continuous 
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variables did not vary in accordance with our cat-
egorical variables, a correlation test proved that 
both cereal and forb cover were still correlated. We 
therefore subtracted cereal cover from forb cover 
so that both terms could be used in a linear model 
(Zuur et  al. 2009). Furthermore, measures of leg-
ume cover were greater than zero mainly under 
organic management. We did not transform these 
measures since any standardization would have 
rendered the minimum levels of cover under con-
ventional management and average levels of cover 
under organic management as equivalent.

We used multi-model inference to determine 
which variables were most important for each group 
(aphids and parasitoids) and to obtain an average 
estimate of their effects. We compared 505 mod-
els for aphid abundances and 1,024 for parasitism 
rates using the Akaike Information Criterion cor-
rected for small sample sizes (AICc) (Burnham 
and Anderson 2002). Model averaging uses Akaike 
weights—assigned to each model in terms of the 
difference in their AICc relative to the best (lowest 
AICc) model—to compute a conditional weighted 
average of model coefficients we considered only 
models in which the variable was present (Burnham 
and Anderson 2002). Of the 512 possible models 
for aphid abundance, seven presented convergence 
problems and were thus excluded from the analysis 
after checking that the convergence issues did not 
depend on a single explanatory variable, and that 
such exclusion did not lead to an unbalanced repre-
sentation of any variable in the model set.

We checked for the normality of residuals in our 
global models using graphical exploration (Zuur et al. 
2009). In our global model for parasitism rates, the 
distribution of residuals departed slightly from nor-
mality owing to the presence of outliers. We repeated 
the analyses with these observations excluded and 
obtained normally distributed residuals; however, we 
found no differences in the estimated effects (direc-
tion and precision of estimates) between the models 
based on complete data or on subset data. Therefore, 
we decided to retain the models based on the com-
plete data set.

All analyses were performed using R 3.3.2 (R 
Core Team 2018), with packages glmmADMB ver-
sion 0.8.3.3 (Fournier et al. 2012; Skaug et al. 2016) 
for model fitting and MuMIn version 1.47.1 (Bartoń 
2016) for multi-model inference.

Results

Aphid abundance

We collected 12,136 aphids belonging to 18 species, 
the most abundant being Sitobion (Sitobion) avenae 
(Fabricius, 1775), which represented 46% of the total 
aphid abundance. See Table S2 in SI for a complete 
list of all aphid species found.

Overall, aphids were mainly influenced by two 
characteristics, namely, crop variety and cereal cover, 
both at field level. The abundance of aphids was 
higher in wheat fields and in fields with less cereal 
cover. Neither management, landscape nor weed 
communities had significant effects (Fig. 3). Based on 
the estimated regression coefficients, the magnitudes 
of landscape and management effects were larger—
albeit non-significantly—than those of weeds.

Parasitism rates

Of the 1058 parasitized aphids, 572 were reared in 
the laboratory. The remaining mummies were already 
open when collected in the field but were still used 
in the calculation of parasitism rates. Of the reared 
mummies, 267 (46%) hatched successfully. A total 
of 109 primary parasitoids (Hymenoptera: Bra-
conidae: Aphidiinae) emerged, of which the most 
abundant species (47.7% of the total) was Aphidius 
uzbekistanicus Luzhetzhi 1960. We also found 133 
hyperparasitoids, the most abundant species (38% of 
the total) being the pteromalid Pachyneuron aphidis 
(Bouché 1834). Twenty-five of the hatched specimens 
were unidentifiable. See Tables S3 and S4 in SI for 
a complete list of all parasitoids and hyperparasitoids 
found.

Parasitism rates were mainly influenced by land-
scape, crop characteristics and aphid abundance 
(Fig. 4). At landscape level, parasitism was negatively 
affected by PAL (lower parasitism rates where the 
landscape was dominated by arable land) and posi-
tively affected by POML (higher parasitism rates with 
a greater concentration of fields under organic man-
agement). The interaction between PAL and POML 
was significant, indicating that POML had no effect 
at high PAL. In terms of crop characteristics, crop 
variety—but not cereal cover—was also important 
in determining the rates of parasitism, which were 
higher in wheat and closed varieties than in barley 
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fields. Neither field management nor the presence of 
weeds affected significantly parasitism rates, which 
were higher when aphid abundances were low.

Discussion

Our study reveals that field-level factors were relevant 
for predicting both aphid abundances and parasit-
ism rates, whereas, landscape variables only show a 

Fig. 3  Multimodel-
inference for the aphid 
abundance, showing the 
averaged estimates for all 
predictor variables and their 
unconditional SE for all 
models containing the vari-
able (Burnham and Ander-
son 2002). Coefficients 
whose confidence intervals 
do not include zero are 
significant. Management 
stands for the difference 
Organic vs. Conventional. 
Crop variety represents 
the difference Barley vs. 
Wheat. Cover variables 
are included in the models 
according to the procedure 
described in the text

Fig. 4  Multimodel-
inference for the parasitism 
rate, showing the averaged 
estimates for all predictor 
variables and their uncon-
ditional SE for all models 
containing the variable 
(Burnham and Anderson, 
2002). Coefficients whose 
confidence intervals do not 
include zero are significant. 
Management stands for 
the difference Organic vs. 
Conventional. Crop variety 
represents the difference 
Barley vs. Wheat. Cover 
variables are included in 
the models according to 
the procedure described in 
the text
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significant relationship with parasitism rates. This 
highlights the importance of considering simultane-
ously field-scale and landscape factors when analys-
ing the aphid-parasitoid community.

Field-level factors

Crop variety is the most relevant factor explaining the 
variation in cereal aphid abundance. Aphid density 
was higher in wheat fields, which suggests a greater 
preference for wheat than barley. The dominance of 
Sitobion avenae, which was the most abundant spe-
cies in the studied systems, may explain this pattern 
as other authors have stated (Watt 1979; Watson and 
Dixon 1984). They attribute the lack of interest for 
barley to its compact and awned ears that are less 
suitable than those of wheat, which may explain the 
smaller aphid populations found on barley in the field. 
Gao and Liu (2013) found that S. avenae clones per-
formed differently on wheat and barley, with lower 
developmental times, higher fecundity and higher 
growth rates for wheat clones of S. avenae compared 
to barley clones. However, other studies report the 
opposite relationship (Sigsgaard 2002) and it seems 
that sampling year, cereal variety (Ba-Angood and 
Stewart 1980) and aphid clone diversity (Gao et  al. 
2014) could explain some of this variability.

Aside from crop variety, the main factor affect-
ing aphid abundances was cereal cover. The relation 
between phytophagous insects and plant cover has 
been widely investigated (Lawton 1983; Poveda et al. 
2006; Caballero-López et al. 2010) but such interac-
tions may be either negative or positive (Evans 2008). 
Although many authors have addressed the topic from 
a plant chemistry or food quality perspective (Stiling 
and Moon 2005) this pattern could also be attribut-
able to microclimatic conditions acting via insects’ 
physiological constraints or to the behavioural 
response of aphids to crop stand density. Sampaio 
et al. (2017) report that an increase in either precipi-
tation or temperature favoured an increase in aphid 
populations. Nevertheless, high levels of precipitation 
combined with high temperatures did seem to act as 
a brake on Brassica aphid populations. Honěk et  al. 
(2018) speculated that the negative response to plant 
cover was related to the microclimatic conditions 
in dense plots since high humidity has an adverse 
effect on population growth by favouring the devel-
opment of mycoses. Alternatively, sparse crop stands 

are warmer and drier and enhance the development 
rate and fecundity of aphids (Honěk and Martink-
ova 2004). Winder et  al. (2005) attributes the nega-
tive relationship with crop cover to the spread of the 
aphid population between more numerous shoots. 
This behaviour leads to the formation of smaller colo-
nies or less persistent colonies in dense crop stands 
(Winder et al. 2014), which would be less detectable 
by our sampling method. Furthermore, greater cereal 
cover also implies less weed cover, thereby increas-
ing the efficiency of host/prey searching by natural 
enemies and thus enhancing biological control (Gols 
et al. 2005); however, the analysis of parasitism rates 
in our study does not support this explanation.

Studies evaluating the effects of organic farm-
ing generally find positive effects across all taxa 
understudy (Bengtsson et al. 2005; Hole et al. 2005; 
Ponce et  al. 2011), although variations in responses 
between taxa have been shown to occur (Fuller et al. 
2005; Clough et al. 2007). For instance, Inclán et al. 
(2015) reported a significant decrease in parasitoid 
diversity in arable crops under conventional agri-
culture (because insects are negatively affected by 
the use of chemical pesticides) compared to organic 
farms where chemicals are not applied. However, 
conventional practices of cereal crops in a dry-land 
context do not commonly involve insecticide appli-
cations, which presumably could explain the lack of 
differences in the dichotomy organic vs. conventional 
agriculture in our dry-land aphid-parasitoid system. 
Puech et  al. (2014) also attribute the lack of differ-
ences between organic and conventional manage-
ment to the limited use of insecticides in conventional 
fields, which are not applied in a dry-land context.

The response of parasitism rate is a mix of effects 
from the in-field factors to landscape factors. Parasit-
ism rate respond in the first instance to the abundance 
of hosts. However, the negative density dependence 
of parasitism on aphid abundance was unexpected, 
although similar to the observations made by Pareja 
et al. (2008) who suggest that inverse density depend-
ence may appear when parasitoids only attack the 
periphery of colonies: this implies that the bigger the 
colony, the lower the parasitism rates. Alternatively, 
Hassell (1984) and Hassell et al. (1985) defended that 
such patterns of parasitism could be explained mech-
anistically in terms of the allocation of searching time 
in patches of different host density and the maximum 
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attack rate per parasitoid that constrains the extent of 
host exploitation within a patch.

In contrast to the findings reported by Caballero-
López et  al. (2012), aphid abundances and parasit-
ism rates in our study did not respond to differences 
in the weed community and, in fact, the size of the 
effect (coefficients) of all weed groups was one or 
two orders of magnitude less than that of other vari-
ables. One difference may stem from the fact that 
Caballero-López et  al. (2012) sampled in the centre 
of fields (55  m from edges), while in our study we 
examined patterns that were closer to field boundaries 
(3  m from field edges). Just as semi-natural vegeta-
tion patches or floral strips are more relevant for natu-
ral enemies of aphids in intensive landscapes where 
there is a massive lack of alternative resources (Hae-
nke et  al. 2009; Jonsson et  al. 2015) weeds may be 
more important for parasitoids further inside the field, 
where, compared to the edges, there are fewer avail-
able resources (José-María et  al. 2011; Serée et  al. 
2023). Furthermore, adult parasitoids can also rely 
on aphid honeydew for sugar provision, although it 
is nutritionally inferior to floral nectar (Wäckers et al. 
2008), thus making floral resources inside fields less 
relevant to parasitoids.

Landscape

In agreement with our initial hypothesis, we found 
that aphids respond mainly to field-scale parameters 
and do not respond to the surrounding landscape 
characteristics. This finding agrees with what Hawro 
et  al. (2015) found in a cross-country comparison, 
where landscape complexity and agricultural intensi-
fication did not significantly affect total aphid densi-
ties. The lifestyle of aphids during the crop-growing 
season means they have little need to disperse until 
crop senescence, which thus reduces the effect of 
landscape on their abundances. It has been argued 
that field margins can be a source of field coloniza-
tion by aphids early in spring (Thies et  al. 2005; 
Plećaš et al. 2014) but this phenomenon seems to be 
of little relevance in a Mediterranean context where 
mild winters allow aphids to remain in fields during 
the cold season (Pons et  al. 1993; Chaplin-Kramer 
et al. 2013).

On the other hand, our results show the rel-
evance for parasitism rates of the landscape within 
a 500-m buffer. These findings are in line with a 

considerable body of research that supports the idea 
that parasitoids respond positively to landscape com-
plexity (Chaplin-Kramer et  al. 2011; Plećaš et  al. 
2014; Rusch et  al. 2016; Dainese et  al. 2017), and 
that parasitism rates decrease as the cropped surface 
increased (Thies et al. 2005; Roschewitz et al. 2005). 
Our results show that natural flight-capable enemies 
such as parasitoids are not restricted to the cropland. 
This is important because, if the impact of natural 
enemies is to be increased by promoting field mar-
gins, these margins should ideally have an impact at 
landscape scale rather than only providing benefits to 
the immediately adjacent crop (Elzinga et  al. 2007). 
These non-crop landscape elements are necessary as 
Aphidiinae parasitoids have a wider resource require-
ment than those normally found within cereal crops 
(Bianchi and Wäckers 2008; Gillespie et al. 2016) and 
are beneficial for parasitoids even when these adja-
cent non-crop elements correspond with woody veg-
etation (Thomson and Hoffmann 2009; Salat-Moltó 
et  al. 2023). Parasitoids may overwinter outside 
cropped areas and follow their hosts into the crops in 
spring (Landis et al. 2000; Vialatte et al. 2007; Rams-
den et al. 2017).

Although the proportion of semi-natural areas was 
the most important determinant of the abundance 
of parasitoids, we also found that the proportion of 
organic land in the landscape played a major role, fol-
lowing the main headline of Galloway et  al. (2021) 
that organic farming enhance the arthropods preda-
tors, but this depends on neighbouring patches of 
natural vegetation. The detected significantly higher 
parasitism rates with increasing POML agrees with 
the findings for parasitoids (Inclán et al. 2015) and for 
other insect groups such as butterflies, epigeal arthro-
pods and solitary bees (Gabriel et al. 2010).

These effects may also arise because the distri-
bution and persistence of species across landscapes 
depend on the species’ dispersal ability (Elzinga et al. 
2007). As parasitoids have been found to respond 
to habitat connectivity (Fernandes et  al. 2022) the 
amount of organic farming in agricultural landscapes 
appears to be a potential means of re-establishing it in 
farmland, therefore enhancing its parasitoid commu-
nities (Benton et al. 2003).
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Conclusions

At field level, a bottom-up mechanism in which char-
acteristics such as crop variety and crop cover influ-
ence the size of aphid populations, which in turn is 
the main factor affecting parasitism rates, seems to 
be operating. Weeds, on the other hand, play no role 
in either aphid or parasitoid abundances. In terms of 
management, field-level organic management may 
not be enough to affect the level of biological control 
exerted by parasitoids on aphids.

We can anticipate that a coordinated implementa-
tion of organic farming at landscape level is a much 
more promising strategy for increasing the biological 
control of aphids than a concentration on the individ-
ual management of fields. Any such coordinated land-
scape management should also include the conserva-
tion of existing non-crop habitat patches.
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