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Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and

are useful for sexual polyploid breeding in various species, particularly for developing

new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were

recently revealed for Citrus reticulata but remain poorly understood for other citrus

species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency

and causal meiotic mechanisms of 2n megagametophyte production in lemon. We

genotyped 48progeny plants of two lemon genotypes, “Eureka Frost” and “Fino”, using

16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP)

markers to determine the genetic origin of the progenies and the underlying mechanisms

for 2n gamete formation. We utilized a maximum-likelihood method based on parental

heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns

along the chromosome. The frequency of 2n gamete production was 4.9% for “Eureka

Frost” and 8.3% for “Fino”, with three meiotic mechanisms leading to 2n gamete

formation. We performed the maximum-likelihood method at the individual level via

centromeric marker analysis, finding that 88% of the hybrids arose from second-division

restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD),

and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1

confirmed that SDR is the main mechanism for 2n gamete production. Recombination

analysis between markers in this LG revealed partial chiasma interference on both arms.

We discuss the implications of these restitution mechanisms for citrus breeding and

lemon genetics.

Keywords: Citrus, unreduced gametes, meiotic restitution, second-division restitution (SDR), first-division

restitution (FDR), post-meiotic genome doubling (PMD) mechanisms, seedlessness

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.01211
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.01211&domain=pdf&date_stamp=2017-07-12
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:patrick.ollitrault@cirad.fr
mailto:aleza@ivia.es
https://doi.org/10.3389/fpls.2017.01211
http://journal.frontiersin.org/article/10.3389/fpls.2017.01211/abstract
http://loop.frontiersin.org/people/430339/overview
http://loop.frontiersin.org/people/90800/overview
http://loop.frontiersin.org/people/347918/overview










Rouiss et al. 2n Gamete Production in Lemon

TABLE 2 | Plant regeneration and ploidy level analysis of plants recovered from “Eureka Frost” X “Fortune” mandarin (EuFor), “Eureka Frost” X C. ichangensis (EuIch), and

“Fino” X C. macrophylla (FinMac).

Hybridization Pollinated

flowers

Fruits

set

Total number

of seeds

Normal

seeds

Undeveloped

seeds

Small

seeds

Cultured

embryos

Recovered

plants

Diploid

plants

Triploid

plants

Tetraploid

plants

EuFor 55 25 464 419 0 45 54 53 32 21 0

EuIch 60 22 250 210 0 40 40 35 21 14 0

FinMac 15 8 156 36 154 36 36 36 0 23 13

FIGURE 1 | Electropherograms of a triploid and a tetraploid hybrid recovered from EuIch and FinMac hybridizations using SSR marker JK-TAA 41. (A) “Fino” and

“Eureka Frost” lemons displayed the same allelic configuration fr this marker; (B) C. macrophylla; (C) tetraploid hybrid with four different alleles from “Fino” X 4x C.

macrophylla hybridization. (D) C. ichangensis. (E). Triploid hybrids with two alleles from the female parent “Eureka Frost” lemon and one from the male parent C.

ichangensis. nt: nucleotides.

tetraploid C. macrophylla, allowing us to conclude that all plants
were hybrids and that “Fino” lemon produced the 2n gametes
(Figure 1). Analysis of the genetic origins of the 23 triploid
plants recovered from this 2x X 4x hybridization showed that,
as expected, they were obtained from the union of a normal
reduced haploid female gamete and a normal reduced diploid
pollen gamete, as previously observed in other citrus species
(Aleza et al., 2012a).

Lemon hybrids were obtained from 2n gametes at a frequency
of 4.9% for “Eureka Frost” and 8.3% for “Fino”. Geraci et al.
(1975) reported frequencies of 1 and 5% for triploid hybrids
assumed to be obtained through unreduced gametes of “Lisbon”
and “Eureka” lemons, respectively. Pérez-Tornero et al. (2012)
obtained triploid hybrids at a frequency of 5.8 to 8.6% in
hybridizations between diploid plants of “Verna” as the female
parent and “Fino” as the male parent. In mandarins, greater
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differences between genotypes have been observed, ranging from
<1% for clementines to over 22% for “Sukega” and “Ortanique”
tangor (Esen and Soost, 1971;Wakana et al., 1982; Ollitrault et al.,
2008; Aleza et al., 2010a; Xie et al., 2014).

The frequency of 2n gametes was shown to be genotype-
dependent in citrus and in other herbaceous and woody plants
such as Brassica, potato, and peach (Dermen, 1938; Mok et al.,
1975; Ollitrault et al., 2008; Aleza et al., 2010a; Mason et al.,
2011; Younis et al., 2014). This hypothesis is supported by the
genetic improvement of unreduced gamete rates for Trifolium
(frequencies increased from 0.04 to 47%) and Medicago sativa
(from 9 to 78%) in only three generations of recurrent selection
(Gallais, 2003).

In the current study, we observed a rate of 4.9% 2n gametes
in the 2x X 2x hybridizations (EuFor and EuIch), whereas, in
the 2x X 4x hybridization (FinMac), the percentage was higher
(8.3%). These differences might be due to a genotypic effect
of the parents, but are more likely due to the modification
of the embryo/endosperm ploidy level ratio in interploid
hybridizations. Esen and Soost (1971) reported that, in diploid
plants, when an unreduced gamete is pollinated with normal
reduced pollen, the embryo/endosperm ploidy level ratio (3/5)
is less favorable for embryo development than that for normal
diploid embryos (2/3), whereas the pollination of a 2n female
gamete with diploid pollen in 2x X 4x sexual hybridizations
provides the correct embryo/endosperm ploidy level ratio (4/6
= 2/3), leading to normal seed development. Therefore, 2x X
4x hybridization appears to be a more favorable situation for
revealing unreduced gametes via the development of tetraploid
embryos in normal seeds.

Mechanism of Unreduced Gamete
Formation
To determine the mechanism leading to unreduced gamete
formation, we used nine unlinked molecular markers localized
in the nine LGs for EuFor and EuIch and seven markers in
seven different LGs for FinMac to perform a LOD score test
for SDR/FDR and SDR/PRD probability ratios for all genotypes
analyzed (Tables 3, 4, 5). The analysis of six markers covering
LG1 and additional telomeric loci allowed us to distinguish
between SDR and PMD when the inferred gametes were totally
homozygous for the centromeric loci.

LOD Score Analysis
For the EuFor hybridization, 20 triploid hybrids were genotyped
using nine centromeric loci found in all LGs. Ten of the inferred
2n gametes were totally homozygous for these markers. However,
all displayed at least one heterozygous marker when six markers
covering LG1 were analyzed, allowing the PMD hypothesis to be
rejected for all inferred 2n gametes. For the SDR/FDR hypothesis
test at the individual level, 19 inferred 2n gametes displayed LOD
values>2 (ranging from 12.05 to 15.22; Table 3). For the same 19
gametes, the LOD values for SDR/PRD were also >2. Therefore,
these 19 plants were considered to have originated from SDR.
One plant obtained negative LODs of −4.52 and −6.86 for the
SDR/FDR and SDR/PRD hypotheses, respectively, suggesting
that this plant is of FDR or PRD origin. At the population level,

the LOD values were 267.82 and 57.03 for the SDR/FDR and
SDR/PRD hypotheses, respectively, revealing a high rate of SDR.

For EuIch hybridization, 10 triploid hybrids were genotyped
with nine centromeric markers located on all LGs. Two inferred
2n gametes were totally homozygous for these markers, but at
least one heterozygous locus was observed for each 2n gamete
in the complementary analysis of PHR along the LG1, thus
discarding the PMD hypothesis. At the individual level, eight
plants displayed LOD values >2 for SDR/FDR (from 8.69 to
14.53), rejecting the FDR hypothesis (Table 4). Among them,
seven displayed a LOD >2 for SDR/PRD (ranging from 2.13
to 3.86) and were considered to have arisen from SDR. The
LOD value for the remaining 2n gamete was 0.55, suggesting
that this 2n gamete had arisen from SDR rather than PRD,
but, since this value is below our threshold, this result is not
conclusive. Two plants produced negative LOD values (< −2)
in both the SDR/FDR and SDR/PRD tests, suggesting that they
originated by FDR or PRD. The population LODs were 80.21
and 2.77 for SDR/FDR and SDR/PRD respectively, confirming
the predominance of the SDR mechanism.

For FinMac, 13 tetraploid hybrids were genotyped with seven
centromeric markers (LGs 1, 2, 4, 6, 7, 8, and 9). Six inferred 2n
gametes were totally homozygous for these markers (Table 5).
Among these, two unreduced gametes (from FinMac 12 and
FinMac 13) remained totally homozygous after analyzing six
markers covering LG1 and were subjected to additional analysis
to distinguish between the SDR and PMD hypothesis. The 11
2n gametes with at least one heterozygous locus produced LOD
values >2 for SDR/FDR, rejecting the FDR hypothesis. Among
these, four displayed LOD values of 2.81 for the SDR/PRD test
and were therefore considered to have arisen from SDR. The
seven remaining 2n gametes displayed positive values ranging
from 0.52 to 1.91. These gametes had a higher probability
of arising from SDR than from PRD, but this result is not
conclusive because the values are below our threshold. The
population LOD values were 78.84 and 19.81 for SDR/FDR and
SDR/PRD, respectively, again confirming the prevalence of SDR.
The seven 2n gametes with inconclusive individual LODs display
a population LOD of 43.12 and 8.56 for SDR/FDR and SDR/PRD,
respectively. It is therefore highly probable that they also arose
from SDR.

Pattern of Heterozygosity Restitution along
Lg1 For 2n Gametes with An Identified SDR
Origin and Undetermined SDR/PRD Origin
To validate, at the population level, the finding that 38 2n
gametes were derived by SDR (as determined by individual
LOD analysis) and to distinguish between SDR and PRD
for the eight gametes with inconclusive individual LODs, we
compared the PHR patterns of the two set of gametes in
LG1. For this analysis, we used four SSR markers (CIBE6126,
mCrCIR06B05, MEST001, and MEST431) and two SNP markers
(CiC2110-02 and CiC5950-02) (Figure 2) mapped in LG1
(Figures 3, 4).

For the conclusive SDR 2n gametes, the PHR values in
LG1 (Figure 3) decreased from 67% for the telomeric marker
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TABLE 5 | Heterozygous and homozygous profiles for 2n gametes from FinMac hybridization analyzed using SSR and SNP markers close to the centromeres of seven

LGs and the LOD score test for SDR/FDR and SDR/PRD probability ratio.

MARKER MEST001 JK-CAC15 CiC4240-04 LapXcF238 mCrCIR03B07 8P16570424 CiBE3966 LOD

(SDR/FDR)

LOD

(SDR/PRD)

LG 1 2 4 6 7 8 9

Centromere Position (cM) 0.607 0.569 0.161 0.064 0.964 0.542 0.522

Marker Position (cM) 0.706 0.435 0.071 0.110 0.834 0.500 0.523

Distance to the

centromere (cM)

0.099 0.134 0.091 0.046 0.130 0.042 0.001

Genotypes analyzed 2n gamete genetic configuration

FinMac 1 HO HO HO HO HO HO HO 8.93 2.81

FinMac 2 HO HO HO HO HO HO HO 8.93 2.81

FinMac 3 HO HO HO HO HO HO HO 8.93 2.81

FinMac 4 HO HO HO HO HO HO HO 8.93 2.81

FinMac 5 HO HO HO HE HO HO HO 6.62 1.52

FinMac 6 HE HO HO HO HO HO HO 7.37 1.91

FinMac 7 HO HO HE HO HO HE HO 4.88 0.52

FinMac 8 HO HO HE HO HO HO HO 7.28 1.86

FinMac 9 HO HO HE HE HO HO HO 4.97 0.56

FinMac 10 HO HO HE HO HE HO HO 6.00 1.10

FinMac 11 HO HO HE HO HE HO HO 6.00 1.10

Population LODs 78.84 19.81

LODs > 2 are significant for SDR. LOD < −2 are significant for FDR or PRD. LODs between 2 and −2 are not significant. HE: Heterozygous and HO Homozygous.

FIGURE 2 | Plot of A, G allele signals of SNP marker CiC5950-02 representing triploid (A) and tetraploid (B) hybrids from EuIch and FinMac sexual hybridizations.

Letters indicate the allelic configuration for each hybrid.

CIBE6126 to 3% for the centromeric marker mCrCIR06B05
and progressively increased to 77% when moving toward the
other telomeric marker, MEST431. The average PHR value was

42%. For the eight inconclusive 2n gametes, the same PHR
pattern was observed: the lowest value was obtained for the
centromeric marker mCrCIR06B05 (0%) and the highest for
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FIGURE 3 | Evolution of maternal heterozygosity restitution values of the analyzed SSR and SNP markers in LG1 considering the significance of the obtained LOD

values for each hybrid from “Eureka Frost” and “Fino” lemons with conclusive and inconclusive SDR2n gametes. Black dot indicates the centromere position on the

reference clementine genetic map (Ollitrault et al., 2012a).

the telomeric markers (63% for CiC2110-02 in one telomere
and 75% for MEST431 in the other). The average PHR for
these eight gametes was 46% (Figure 3). These PHR patterns
totally fit the profile for SDR. The average PHR value over
the two sets of 2n gametes was 43%. Various studies have
indicated that the global restitution of heterozygosity is expected
to be near 80% for FDR and 40% for SDR, assuming a
randomdistribution of heterozygous loci along the chromosomes
(Peloquin, 1983; Hutten et al., 1994; Carputo et al., 2003). Both
the patterns along LG1 and the average PHR values comply with
the SDR hypothesis. Therefore, we conclude that the eight 2n
gametes of indeterminate origin identified from the individual
LOD (SDR/PRD) analysis also originated from SDR. Under
this conclusion, the PHR pattern in LG 1 is very similar for
“Eureka Frost” and “Fino” lemon SDR 2n gamete populations
(Figure 4).

Distinction between SDR and PMD for
Fully Homozygous 2n Gametes
We performed additional analyses of the two inferred 2n gametes
(FinMac 12 and FinMac 13 tetraploid plants) fully homozygous
for the seven centromeric markers and the six markers of LG1.
Fully homozygous 2n female gametes for centromeric loci can
originate through SDR or PMD, with different consequences for
the genetic structures of 2n gametes. Bastiaanssen et al. (1998)
defined two conditions that are necessary to conclude that PMD

rather than SDR has occurred, i.e., 100% homozygosity for all
genotyped loci and the occurrence of recombination between
homozygous alleles in the same LG. Therefore, we genotyped
FinMac 12 and FinMac 13 using 11 telomeric loci found in
different LGs to provide genetic evidence for a particular PMD
mechanism. The average distance from these markers to their
corresponding centromere is 53.22 cM (ranging from 25.32
to 89.59 cM). Both plants were homozygous for all molecular
markers analyzed. Furthermore, C. limon is a direct hybrid
between two genetically distant genotypes, C. aurantium and C.
medica (Nicolosi et al., 2000; Curk et al., 2016), and the specific
origins of the homozygous alleles can easily be distinguished.
We found that some homozygous markers of the same LG were
inherited from the C. aurantium ancestor and the others from
C. medica. For example, multilocus analyses of the homozygous
alleles in LG1 (Figure 5) revealed interspecific recombination
in the two plants with alternation of homozygosity originated
from C. aurantium and C. medica. Consequently, according to
Bastiaanssen et al. (1998), the observation of 100% homozygosity
and recombination between C. aurantium and C. medica along
the same LG provides evidence discarding the SDR mechanism
and leads us to conclude that these two 2n gametes originated
through PMD. To our knowledge, this is the first report of
the identification of a new mechanism, Post-Meiotic genome
Doubling, leading to 2n ovule gametes in citrus, and specifically
in lemon.
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FIGURE 4 | Evolution of maternal heterozygosity restitution values of the analyzed SSR and SNP markers in LG 1 considering both populations, “Eureka Frost” and

“Fino” lemon SDR-2n gametes. Black dots indicate the centromere position on the reference clementine genetic map (Ollitrault et al., 2012a).

FIGURE 5 | Multilocus configuration of the two fully homozygous plants recovered from FinMac hybridization with six molecular markers located on LG 1. Yellow

indicates the presence of homozygous alleles inherited from C. aurantium, and green indicates those from C. medica.

Synthesis of Different Approaches
On the whole, we conclude that 38 (88%) of the 2n gametes
analyzed had arisen from SDR, three (7%) from FDR or PRD,
and two (5%) from PMD. At the population level, SDR appears
to be by far the most commonmechanism for 2n ovule formation
in both C. limon genotypes, “Eureka Frost” and “Fino”. This is
the first report of the production of a large number of lemon

progenies from 2n gametes produced by different mechanisms
of unreduced ovule gametes. Luro et al. (2004), Aleza et al.
(2015), and Cuenca et al. (2015) also found that SDR was
the predominant mechanism leading to 2n megagametophyte
production in mandarins. Among the 19 mandarins investigated,
the authors concluded that only 1.1 and 2.9% of plants were
recovered from FDR in the “Ellendale” and “Fortune” mandarins,
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respectively. The coexistence of SDR and FDR has been recently
observed in unreduced pollen gametes by Rouiss et al. (2017).
53 plants were obtained from 2n pollen gametes produced by a
diploid hybrid between clementine and sweet orange. FDR was
the predominant mechanism (77%) and SDR was the mechanism
for the remaining plants (23%). In addition, FDR was the main
mechanism for 2n female gamete production in “Femminello”
lemon (Ferrante et al., 2010). These results are questionable
because the authors used only a few molecular markers and
lacked previous information about centromere location and the
relative distances between themarkers and the centromeres.With
the recent location of centromeres in the citrus genetic map
(Ollitrault et al., 2012a; Aleza et al., 2015), the markers used by
Ferrante et al. (2010), JK-TAA1, JK-TAA15, JK-TAA41, and NB-
GT03, are located at 87.29, 59.07, 74.99, and 50.47 cM from the
centromere of the LGs 6, 1, 2, and 8 respectively, being mostly
telomeric, and therefore the high PHR values obtained in their
study can fit both SDR or FDR mechanisms.

At the methodological level, we demonstrated the power
of using two complementary approaches, namely, analysis of
the PHR pattern in one LG with the maximum-likelihood
method proposed by Cuenca et al. (2015). Considering only
centromeric loci, different mechanisms can lead to the same
homozygous patterns. Therefore, analyzing the heterozygosity
restitution pattern along LGs at the individual level is a useful
approach for distinguishing between SDR and PMD, since, under
this mechanism, the heterozygosity restitution value is zero for all
markers in all LGs. After LOD analysis at the individual level, this
method is used to analyze PHR patterns at the population level
to distinguish between SDR and PRD when individual LODs are
under the threshold required to obtain conclusive results. When
enough number of individuals is analyzed, this technique should
also be utilized to distinguish between FDR and PRD. With
FDR-2n gametes, heterozygosity restitution varies from 100% in
centromeric loci to close to 66% in telomeric areas under the
non-interferencemodel (Cuenca et al., 2011), whereas, with PRD,
heterozygosity restitution is expected to be very similar along the
entire chromosome.

Crossover and Interference Analysis
Crossover interference ensures the appropriate distribution of
crossovers along the chromosome, since one crossover reduces
the likelihood of other crossovers occurring nearby (Youds et al.,
2010). The analysis of crossover rates (Table 6) for both arms
of chromosome I revealed the presence of up to four crossovers
on one arm and three on the other arm. In addition, three
complementary crossovers (double crossing over involving four
chromatids) were observed as a result of phase-changing between
two homozygous markers. Similarly, Cuenca et al. (2011) and
Aleza et al. (2015) detected up to four crossovers on one arm
and complementary crossovers in “Fortune” mandarin and C.
clementina. We estimated the IC for each chromosome arm,
finding partial interference in both arms (IC = 0.27 and 0.44).
Such variation in interference values between both arms has also
been observed in other citrus species, ranging from 0.82 to 0.48
for “Fina” clementine on LG 1 (Aleza et al., 2015) and 0.73 to 0.53
for “Fortune” mandarin on LG 2 (Cuenca et al., 2011). Variation

TABLE 6 | Number of observed crossover events on each arm of chromosome I

based on analysis of 27 genotypes recovered from “Eureka Frost” lemon pollinated

with C. ichangensis and “Fortune” mandarin using six molecular markers.

Number of

crossovers

Arm 1

0 1 2 3 4

A
rm

2

0 2 2 1 0 0 13%

1 7 17 3 (2) 0 1(1) 74%

2 1 3 0 0 0 11%

3 0 1 0 0 0 3%

26% 61% 11% 0% 3%

Numbers between brackets indicate the number of complementary crossovers.

in the level of interference between different parts of the genome
has also been observed in Arabidopsis (Drouaud et al., 2007),
humans (Lian et al., 2008), and mice (Broman et al., 2002).

Implications of Sexual Polyploidization for
Breeding Triploid Lemon-Like Plants
Sexual polyploidization via 2n gametes and interploid sexual
hybridizations using tetraploid parents (doubled diploids) are
the main strategies used to produce triploid citrus hybrids
(Ollitrault et al., 2008; Aleza et al., 2010b, 2012a,b, 2016; Navarro
et al., 2015). These different strategies and the different meiotic
behaviors result in different genetic structures in the diploid
gametes and, consequently, the resulting triploid progenies. The
three hybrids obtained via FDR or PRD 2n gametes have a
higher rate of heterozygosity than hybrids obtained via SDR.
By contrast, the two plants obtained by PMD transmit 0% of
PHR (Bastiaanssen et al., 1998). Therefore, such a mechanism
generally promotes inbreeding in the hybrid progenies (Tai,
1986; Gallais, 2003). However, these lines constitute interesting
parentals to be used as test lines in inheritance studies
(Bastiaanssen et al., 1998).

In addition, the mechanism that generates the 2n gametes
affects the breeding efficiency for a character in relation
to the genetic distance to the centromeres of the major
genes controlling this character. For instance, Cuenca et al.
(2013b, 2016) found that resistance to Alternaria brown-spot
fungal disease is a recessive trait controlled by a single locus
located at 10.5 cM from the centromere of chromosome III.
Therefore, in crosses between a heterozygous parent producing
diploid gametes and a resistant genotype, PMD is the most
favorable mechanism (50% of resistant hybrids), followed
by SDR (40%). Under FDR, only 5% of the hybrids will
be resistant. For diploid gametes produced by the doubled-
diploid genotype or resulting from PRD, the rates of resistant
hybrids should vary from 16% (tetrasomic segregation) to
0% (disomic segregation) according to the preferential pairing
behavior.

The aim of some lemon-breeding programs is to produce
new lemon-like types of fruit, which essentially involves 2x X
4x crosses using diploid lemons as female parents and more
or less complex hybrids as tetraploid parents (Recupero et al.,
2005; Viloria and Grosser, 2005). This approach is used in
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an attempt to solve some of the problems caused by the low
genetic variation of C. limon, although relatively few tetraploids
are available. This approach has allowed for the selection and
protection of the triploid “Lemox”, a hybrid between a diploid
female complex hybrid, and tetraploid lemon (Recupero et al.,
2005). “Lemox” produces quality fruits resembling lemons with
high tolerance to Mal secco. The 2n lemon gametes will be very
useful for producing new lemon-like seedless citrus types via 2x
X 2x hybridizations, thereby dramatically increasing the gene
pool of genotypes that could be used as parents. Furthermore,
the production of 2n gametes has been investigated in a small
number of lemon genotypes. Evaluating the many existing lemon
genotypes may result in the detection of specific genotypes that
produce higher rates of 2n gametes and (eventually) genotypes
with different ratios of FDR and SDR 2n gametes, which will
increase the efficiency of breeding programs.

CONCLUSION

Genetic analysis with SSR and SNP markers revealed that two
genotypes of C. limon, “Eureka Frost” and “Fino”, produced 2n
female gametes. The frequencies of 2n gametes were 4.9 and
8.3% for “Eureka Frost” and “Fino” lemons, respectively. The use
of complementary methods, including individual LOD analysis
from centromeric loci, telomeric loci genotyping, and the analysis
of PHR patterns along a LG, allowed us to distinguish among
the different mechanisms of 2n gamete formation. We detected
three meiotic mechanisms in lemon, with 88% of 2n female

gametes arising from SDR, 7% from FDR or PRD, and 5% from
PMD. To our knowledge, this is the first report of the production
of a large number of lemon progenies from 2n gametes and
the identification of a new mechanism, PMD, which had never
been observed in citrus and rarely been described in other
herbaceous or woody species. From the breeding point of view,
the production of SDR-2n gametes would allow progenies with
polymorphic genetic structures to be recovered, increasing the
likelihood of obtaining new phenotypes by creating an increasing
number of novel multilocus allelic combinations. The coexistence
of different mechanisms for 2n gamete formation broadens the
diversity of lemon 2n gametes and, therefore, their potential for
breeding.
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